scholarly journals Effects of Environmental Pollution on Changes in Blood Biochemical Parameters

2019 ◽  
Vol 1 (1) ◽  
pp. 18-21
Author(s):  
Muhammad Ibrahim ◽  
Sehrish Noor ◽  
Yasmeen Lashari ◽  
Sabeena Rizwan ◽  
Abdul Rehman ◽  
...  

  Abstract   A metabolic marker in the blood of individuals exposed to air pollution is plausible as some environmental pollutants have been observed to enter the blood stream directly from lungs. The main objective of the current review is to find out changes in biochemical parameters of human blood as a result of environmental pollution. Spatio temporal models involving measurement of  Air Quality Index were accommodating to find out the results of development of an aggregate air quality index. Results depicted that mean values of RBC and hemoglobin concentration in blood of exposed children were significantly different from those of non-exposed group. Air pollution may adversely affect children's erythrocytes, particularly PM10 have a significant negative relationship with hemoglobin and RBC numbers while a positive significant relationship with WBC and platelet count. Higher concentrations of air pollutants exposed to pregnant women significantly higher the incidence of pregnancy anemia’s. A strong dose-response relationship was confirmed for both contaminants. It is difficult to establish a causal relationship between specific environmental exposures and complicated multifactorial health outcomes, the application of non-targeted metabolite profiling to assess the effect of air pollution on blood metabolite. Therefore in the present study the main emphasis has been made on the effects of various polluted environment contaminants, their biochemical effects on the composition of blood and various associated disease.    

2021 ◽  
Author(s):  
Mohebat Vali ◽  
Jafar Hassanzadeh ◽  
Alireza Mirahmadizadeh ◽  
Mohammad Hoseini ◽  
Samaneh Dehghani ◽  
...  

Abstract The survival of COVID-19 in different environments may be affected by a variety of weather, pollution, and seasonal parameters. Therefore, the present study aims to conduct an ecological investigation on COVID-19 average growth rate of daily cases and deaths influenced by environmental factors (temperature, humidity, and air pollution) using a sample size of adjusted cumulative incidence of daily cases and deaths based on five sixty-day periods. Research data was gathered on official websites, including information on COVID-19, meteorological data, and air pollution indicators from December 31, 2019, to October 12, 2020, from 210 countries. Spearman correlation and generalized additive model (GAM) were used to analyze the data. During the observed period, the COVID-19 average growth rate of daily cases (r = -0.08, P = 0.151) and deaths (r= -0.09, P = 0.207) were not correlated with humidity. Also, there was a negative relationship between the COVID-19 average growth rate of new cases and deaths with the Air Quality Index (AQI) and wind (r=-0.25, P = 0.04). Furthermore, the data related to the first and second sixty-day of the adjusted cumulative incidence of COVID-19 daily cases and deaths were not associated with humidity and Air Quality Index (AQI). The result of GAM demonstrated the effect of AQI on the average growth rate of COVID-19 new cases and deaths. This study provides evidence for a positive relationship between COVID-19 daily cases, deaths, and AQI.


2018 ◽  
Vol 154 ◽  
pp. 03012
Author(s):  
Edita Rosana Widasari ◽  
Barlian Henryranu Prasetio ◽  
Hurriyatul Fitriyah ◽  
Reza Hastuti

Sidoarjo mudflow or known as Lapindo mudflow erupted since 2006. The Sidoarjo mudflow is located in Sidoarjo City, East Java, Indonesia. The mudflow-affected area has high air pollution level and high health risk. Therefore, in this paper was implemented a system that can categorize the level of air pollution into several categories. The air quality index can be categorized using fuzzy logic algorithm based on the concentration of air pollutant parameters in the mudflow-affected area. Furthermore, Dataflow programming is used to process the fuzzy logic algorithm. Based on the result, the measurement accuracy of the air quality index in the mudflow-affected area has an accuracy rate of 93.92% in Siring Barat, 93.34% in Mindi, and 95.96% in Jatirejo. The methane concentration is passes the standard quality even though the air quality index is safe. Hence, the area is indicated into Hazardous level. In addition, Mindi has highest and stable methane concentration. It means that Mindi has high-risk air pollution.


2021 ◽  
Author(s):  
Leping Tu ◽  
Yan Chen

Abstract To investigate the relationship between air quality and its Baidu index, we collect the annual Baidu index of air pollution hazards, causes and responses. Grey correlation analysis, particle swarm optimization and grey multivariate convolution model are used to simulate and forecast the comprehensive air quality index. The result shows that the excessive growth of the comprehensive air quality index will lead to an increase in the corresponding Baidu index. The number of search for the causes of air quality has the closest link with the comprehensive air quality index. Strengthening the awareness of public about air pollution is conducive to the improvement of air quality. The result provides a reference for relevant departments to prevent and control air pollution.


The surveys regarding air pollution shows that there has been a hasty growth due to the emission of fuels and exhaust gases from factories. The Air Quality Index (AQI) has been launched to note the contemporary status of the air quality. The intent of AQI is to aid every individual know how the regional air quality will make an impact on them. The Environmental Protection Agency assess the AQI for five major air pollutants namely Nitrogen dioxide (NO2), ground-level ozone (O3), particle pollution (PM10, PM2.5), carbon monoxide (CO), and sulphur dioxide (SO2). The intent of the project is to congregate real-time Air Quality Index from distinct monitoring stations across India, analysing the data and reporting on it. Collect the real-time data using the API key provided by Open Government Data (OGD) platform India. This is done by making use of Microsoft Business Intelligence (MSBI) and Power BI Tools to transform, analyse and visualize the data. This project can be utilized to develop various programs like Ozone today in Europe and in mobile applications which acts as an alert system that can protect people from air pollution.


2020 ◽  
Vol 35 (1) ◽  
pp. 33-35
Author(s):  
Soraya Joson ◽  
Joman Laxamana

ABSTRACT Objective: To measure the nasal mucociliary clearance (NMC) time among adults residing in two Philippine communities with different air quality indices using the saccharin and methylene blue test. Methods: Design: Cross-Sectional Study Setting: Diliman, Quezon City and Puerto Princesa, Palawan Participantss: Fifty (50) participants, 25 residing in an urban city with fair air quality index and 25 residing in a rural province with good air quality index. Results: The mean NMC time of the urban group was 22.15±12.68 mins and was significantly longer than the NMC time of the rural group which was 5.29±2.87mins; t(48) = 6.643, p<0.0001). Conclusion: Increased air pollution may be associated with significant prolongation of nasal mucociliary clearance time among urban residents with fair quality air index compared to rural residents with good quality air index. Keywords: nasal mucociliary clearance, naso mucociliary clearance time, air pollution, air quality index, saccharin test, methylene blue


2020 ◽  
Author(s):  
Ying Li ◽  
Tai-Yu Lin ◽  
Yung-ho Chiu ◽  
Huaming Chen ◽  
Hongyi Cen

Abstract Background: Rapid economic growth in China has resulted in a commensurate increase in energy consumption, which in turn has caused an increase in environmental pollution problems. Past research has mainly focused on energy and environmental efficiency analyses with little consideration of the influence of media influence on environmental protection. Further, most studies have used static models and have ignored the dynamic changes over time. Methods : To go some way to filling this research gap, this study developed a modified undesirable Dynamic DEA model that included air quality index (AQI) and CO2 indicators to explore the relationship between energy, the environment and media efficiency in 31 Chinese cities from 2013 to 2016. Results: It was found that: 1. Chongqing, Guangzhou, Nanjing and Shanghai had efficiencies of 1, but Lanzhou, Shijiazhuang, Taiyuan, Xining and Yinchuan needed significant improvements; 2. while Chongqing, Guangzhou, Kunming, Nanning and Shanghai had relatively high media efficiency, the other cities had low efficiency and required improvements; 3. the CO 2 emissions efficiency in most cities was better than the air quality index efficiency; and 4. media reports in most cities were found to have a more positive impact on CO 2 emissions efficiency than AQI efficiency. Conclusions: As environmental awareness enhances the health of civilians and promotes economic growth, the news media needs to promote environmental protection, and should increase its environmental pollution coverage. The quality of media reports on environmental pollution and especially on air pollution need to be improved. Therefore, environmental pollution and awareness media coverage needs to be increased.


2018 ◽  
Vol 10 (11) ◽  
pp. 4220 ◽  
Author(s):  
Wenyang Huang ◽  
Huiwen Wang ◽  
Yigang Wei

China is experiencing severe environmental degradation, particularly air pollution. To explore whether air pollutants are spatially correlated (i.e., trans-boundary effects) and to analyse the main contributing factors, this research investigates the annual concentration of the Air Quality Index (AQI) and 13 polluting sectors in 30 provinces and autonomous regions across China. Factor analysis, the linear regression model and the spatial auto-regression (SAR) model are employed to analyse the latest data in 2014. Several important findings are derived. Firstly, the global Moran’s I test reveals that the AQI of China shows a distinct positive spatial correlation. The local Moran’s I test shows that significant high–high AQI agglomeration regions are found around the Beijing–Tianjin–Hebei area and the regions of low–low AQI agglomeration all locate in south China, including Yunnan, Guangxi and Fujian. Secondly, the effectiveness of the SAR model is much better than that of the linear regression model, with a significantly improved R-squared value from 0.287 to 0.705. A given region’s AQI will rise by 0.793% if the AQI of its ambient region increases by 1%. Thirdly, car ownership, steel output, coke output, coal consumption, built-up area, diesel consumption and electric power output contribute most to air pollution according to AQI, whereas fuel oil consumption, caustic soda output and crude oil consumption are inconsiderably accountable in raising AQI. Fourthly, the air quality in Beijing and Tianjin is under great exogenous influence from nearby regions, such as Hebei’s air pollution, and cross-boundary and joint efforts must be committed by the Beijing–Tianjin–Hebei region in order to control air pollution.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuan Li ◽  
Dabo Guan ◽  
Yanni Yu ◽  
Stephen Westland ◽  
Daoping Wang ◽  
...  

AbstractAlthough the physical effects of air pollution on humans are well documented, there may be even greater impacts on the emotional state and health. Surveys have traditionally been used to explore the impact of air pollution on people’s subjective well-being (SWB). However, the survey techniques usually take long periods to properly match the air pollution characteristics from monitoring stations to each respondent’s SWB at both disaggregated spatial and temporal levels. Here, we used air pollution data to simulate fixed-scene images and psychophysical process to examine the impact from only air pollution on SWB. Findings suggest that under the atmospheric conditions in Beijing, negative emotions occur when PM2.5 (particulate matter with a diameter less than 2.5 µm) increases to approximately 150 AQI (air quality index). The British observers have a stronger negative response under severe air pollution compared with Chinese observers. People from different social groups appear to have different sensitivities to SWB when air quality index exceeds approximately 200 AQI.


2019 ◽  
Vol 9 (19) ◽  
pp. 4069 ◽  
Author(s):  
Huixiang Liu ◽  
Qing Li ◽  
Dongbing Yu ◽  
Yu Gu

Air pollution has become an important environmental issue in recent decades. Forecasts of air quality play an important role in warning people about and controlling air pollution. We used support vector regression (SVR) and random forest regression (RFR) to build regression models for predicting the Air Quality Index (AQI) in Beijing and the nitrogen oxides (NOX) concentration in an Italian city, based on two publicly available datasets. The root-mean-square error (RMSE), correlation coefficient (r), and coefficient of determination (R2) were used to evaluate the performance of the regression models. Experimental results showed that the SVR-based model performed better in the prediction of the AQI (RMSE = 7.666, R2 = 0.9776, and r = 0.9887), and the RFR-based model performed better in the prediction of the NOX concentration (RMSE = 83.6716, R2 = 0.8401, and r = 0.9180). This work also illustrates that combining machine learning with air quality prediction is an efficient and convenient way to solve some related environment problems.


Sign in / Sign up

Export Citation Format

Share Document