Research universal combined inhibitor for the oil and gas industry

2020 ◽  
Vol 25 (2) ◽  
pp. 34-44
Author(s):  
M.B. Adigezalova

Using the gravimetric method, the inhibitory efficiency of the combined inhibitor with respect to hydrogen sulfide and carbon dioxide corrosion of St3 steel in model produced water MI was studied. Corrosion tests were carried out in 0,5 liter sealed vessels on St3 samples of size 30х20х1. Gossypol resin + MARZA was used as a multifunctional combined inhibitor. Diesel fuel and kerosene were used as solvent. It has been established that the protective effect of using a multi-functional combined inhibitor in formation water with oil containing hydrogen sulfide and carbon dioxide using kerosene as a solvent ranges from 75 to 96 and for diesel as 80 to 100. The combined inhibitor allows to achieve in the MI medium containing hydrogen sulfide and carbon dioxide in the process of daily testing the corrosion rate of steel is about 0,04 g/m2·h. only in a concentration of not less than 70 mg/l. However, with an increase in the duration of the test by an order of magnitude, a similar corrosion rate is observed already at an inhibitor concentration of 50 mg/l. The same is characteristic of carbon dioxide and hydrogen sulfide - carbon dioxide solutions.

Author(s):  
Guseyn R. Gurbanov ◽  
Saida M. Pashaeva ◽  
Mekhpara B. Adygezalova

Using the gravimetric method, the inhibitory efficiency of the combined inhibitor with respect to hydrogen sulfide and carbon dioxide corrosion of St3 steel in model-produced water MI was studied. Corrosion tests were carried out in 0.5 l sealed vessels on St3 samples of size 30×20×1. Gossypol resin + MARZA was used as a multifunctional combined inhibitor. Diesel fuel and kerosene were used as solvent. It has been established that the protective effect of using a multifunctional combined inhibitor in formation water with oil containing hydrogen sulphide and carbon dioxide using kerosene as a solvent ranges from 75 to 96 and for diesel as 80 to 100. The combined inhibitor allows to achieve in the MI medium containing hydrogen sulfide and carbon dioxide in the process of daily testing the corrosion rate of steel is about 0.04 g/ m2∙h only in a concentration of not less than 70 mg/l. However, with an increase in the duration of the test by an order of magnitude, a similar corrosion rate is observed already at an inhibitor concentration of 50 mg/l. The same is characteristic of carbon dioxide and hydrogen sulfide - carbon dioxide solutions. The bactericidal properties of the combined inhibitor with respect to two types of Desulfovibriodesulfuricans and Desulfomicrobium sulfate-reducing bacteria were studied. The effect of the inhibitor on the number of bacterial cells and the formation of hydrogen sulfide in Postgate nutrient medium “B” was evaluated. It has been shown that the combined inhibitor exhibits a bacteriostatic effect on to sulphate-reducing bacteria. It was revealed that the degree of suppression of the number of microorganisms Desulfovibriodesulfuricans at a concentration of the combined inhibitor 100.0 mg/l is higher than Desulfomicrobium. In the latter case, to achieve this effect, 120.0 mg/l concentration of the combined inhibitor is required. The studied combination inhibitor causes inhibition of hydrogen diffusion in steel St3 in the MI medium saturated with H2S and CO2 separately and together, and contributes to preserving the ductile properties of the steel St3 after exposure to solutions compared to non-inhibited media.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1183
Author(s):  
Ashiqur Rahman ◽  
Shanglei Pan ◽  
Cymone Houston ◽  
Thinesh Selvaratnam

Produced water (PW) is the largest waste stream generated by the oil and gas industry. Traditional treatment of PW burdens the industry with significant expenses and environmental issues. Alternatively, microalgal-based bioremediation of PW is often viewed as an ecologically safe and sustainable platform for treating PW. Moreover, the nutrients in PW could support algal growth. However, significant dilution of PW is often required in algal-based systems due to the presence of complex chemical contaminants. In light of these facts, the current work has investigated the potential of cultivating Galdieria sulphuraria and Chlorella vulgaris in PW using multiple dilutions; 0% PW, 5% PW, 10% PW, 20% PW, 50% PW and 100% PW. While both algal strains can grow in PW, the current results indicated that G. sulphuraria has a higher potential of growth in up to 50% PW (total dissolved solids of up to 55 g L−1) with a growth rate of 0.72 ± 0.05 g L−1 d−1 and can achieve a final biomass density of 4.28 ± 0.16 g L−1 in seven days without the need for additional micronutrients. Additionally, the algae showed the potential of removing 99.6 ± 0.2% nitrogen and 74.2 ± 8.5% phosphorus from the PW.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1950
Author(s):  
Monika Gajec ◽  
Ewa Kukulska-Zając ◽  
Anna Król

Significant amounts of produced water, spent drilling fluid, and drill cuttings, which differ in composition and characteristics in each drilling operation, are generated in the oil and gas industry. Moreover, the oil and gas industry faces many technological development challenges to guarantee a safe and clean environment and to meet strict environmental standards in the field of processing and disposal of drilling waste. Due to increasing application of nanomaterials in the oil and gas industry, drilling wastes may also contain nanometer-scale materials. It is therefore necessary to characterize drilling waste in terms of nanomaterial content and to optimize effective methods for their determination, including a key separation step. The purpose of this study is to select the appropriate method of separation and pre-concentration of silver nanoparticles (AgNPs) from drilling wastewater samples and to determine their size distribution along with the state of aggregation using single-particle inductively coupled plasma mass spectrometry (spICP-MS). Two AgNP separation methods were compared: centrifugation and cloud point extraction. The first known use of spICP-MS for drilling waste matrices following mentioned separation methods is presented.


Author(s):  
Н.Д. Айсунгуров ◽  
П.С. Цамаева ◽  
А.А. Эльмурзаев ◽  
С.С. Юсупов

Экономической составляющей нашей страны была и остается топливно-энергетическая промышленность, в частности нефтегазовая отрасль промышленности. Снижение объемов добычи жидких углеводородов из-за истощения огромного количества эксплуатируемых скважин заставляет искать пути решения возникающих проблем. Одним из решений такого рода проблем видится увеличение числа эксплуатации нефтегазовых скважин, которые сталкиваются с проблемами из-за высокого содержания в составе вредных компонентов, в частности сероводорода. Ведущие нефтяные компании имеют свое видение решения этих проблем. Исследования ученых в этой области предлагают свои решения подобного рода вопросов. Одним из таких предложений является разработка технологии утилизации сероводорода путем окисления газов кислородом воздуха на твердых катализаторах. В статье предлагается метод выделения серы из высококонцентрированного сероводородсодержащего газа в кипящем слое катализатора. Авторами проведены испытания предлагаемого метода на опытной установке и даны рекомендации по проведению такого рода исследований. The economic component of our country has been and remains the fuel and energy industry, in particular the oil and gas industry. The decline in liquid hydrocarbon production, due to the depletion of a huge number of exploited wells, makes us look for ways to solve the problems that arise. One of the solutions to this kind of problems seems to be an increase in the number of oil and gas wells that encounter problems due to the high content of harmful components, in particular hydrogen sulfide. Leading oil campaigns have their own vision for solving these problems. Researches of scientists in this area offer their solutions to this kind of issues. One of such proposals is the development of technology for the utilization of hydrogen sulfide by oxidizing gases with atmospheric oxygen on solid catalysts. The article proposes a method for the separation of sulfur from highly concentrated hydrogen sulfide-containing gas in a fluidized bed of catalyst. The authors tested the proposed method in a pilot plant and made recommendations for conducting this kind of research.


2021 ◽  
Author(s):  
Afrah AlEdan ◽  
Tohid Erfani

<p>Currently, oil and gas industry dispose the produced water under the ground without treatment and with minimal consideration on the beneficial reuse applications. Yet, in recent years and in response to the worldwide water shortage concerns, produced water management and treatment has gained more attention and interest. Managing produced water is subject to different limitations specially if it is done for offsite applications. This includes the consideration of transportation cost and removal of dispersed and dissolved oil, metals, ammonia, salinity, alkalinity and ion toxicity for human and agricultural use which can result in a greater economic cost in terms of chemical usage and desalination operations. The importance of properly managing produced water is mainly rely on the clear vision of the treating method used which must be defined based on regulatory parameters and reuse standards. This study investigates mathematical modelling and optimisation to include the reuse specification into the produced water quality management and discusses its implication.</p>


2021 ◽  
Vol 87 (12) ◽  
pp. 36-41
Author(s):  
A. S. Fedorov ◽  
E. L. Alekseeva ◽  
A. A. Alkhimenko ◽  
N. O. Shaposhnikov ◽  
M. A. Kovalev

Carbon dioxide (CO2) corrosion is one of the most dangerous types of destruction of metal products in the oil and gas industry. The field steel pipelines and tubing run the highest risk. Laboratory tests are carried out to assess the resistance of steels to carbon dioxide corrosion. However, unified requirements for certain test parameters are currently absent in the regulatory documentation. We present the results of studying the effect of the parameters of laboratory tests on the assessment of the resistance of steels to CO2 corrosion. It is shown that change in the parameters of CO2 concentration, chemical composition of the water/brine system, the buffer properties and pH, the roughness of the sample surface, etc., even in the framework of the same laboratory technique, can lead in different test results. The main contribution to the repeatability and reproducibility of test results is made by the concentration of CO2, pH of the water/brine system, and surface roughness of the samples. The results obtained can be used in developing recommendations for the choice of test parameters to ensure a satisfactory convergence of the results gained in different laboratories, as well as in elaborating of a unified method for assessing the resistance of steels to carbon dioxide corrosion.


2019 ◽  
Vol 3 (1) ◽  
pp. 30-36
Author(s):  
Zuraini Din ◽  

In the oil and gas industry, pipeline is the major transportation medium to deliver the products. According to [1] containment of pipeline loss to indicate that corrosion has been found to be the most predominant cause for failures of buried metal pipes. MIC has been identified as one of the major causes of underground pipeline corrosion failure and Sulphate Reducing Bacteria (SRB) are the main reason causing MIC, by accelerating corrosion rate. The objectives of this study is to study the SRB growth, Desulfovibrio desulfuricans ATCC 7757 due to pH and determine the optimum value controlling the bacteria growth on the internal pipe of carbon steel grade API X70. The result shows that the optimum SRB growth is at range pH 5-5 to 6.5 and the exposure time of 7 to 14 days. At pH 6.5 the maximum corrosion rate is 1.056 mm/year. Corrosion phenomena on carbon steel in the study proven had influence by pH and time. From this result pitting corrosion strongly attack at carbon steel pipe. In the future project, it is recommended to study the effect of different pipe location for example the pipeline under seawater.


2019 ◽  
Vol 37 (4) ◽  
pp. 425
Author(s):  
Alvaro Morelos-Moreno ◽  
José Fernando Martel-Valles ◽  
América Berenice Morales-Díaz ◽  
Rahim Foroughbakhch-Pournavab ◽  
Isidro Morales ◽  
...  

Oil and gas industry produces wastewater (produced water), which contains hydrocarbons, heavy metals, and other components, such as mineral salts essential for plant nutrition. Hydrocarbons presence on produced water limits its potential use in the agriculture, as its lead to inhibition of plant growth. The present study aimed to investigate the effect of hydrocarbons analogous contained in the produced water on 1) pH and electrical conductivity (EC) of irrigation leachate, 2) plant´s morphological variables, 3) mineral concentration, 4) fruit pH, EC and total dissolved solids (TDS), during flowering and fruiting stages in tomato grown into greenhouse conditions. As source of produced water were used diesel at concentrations of 20 and 25 mg L‑1, gasoline at 40, 50 and 60 mg L-1, and benzene at 75 mg L-1, applied in the substrate by means of a syringe. All plants treated with hydrocarbons reached the fruit setting and ripening stage at the 6-cluster. Depending on their type, concentration, and exposure time, hydrocarbons modif ied the pH and EC of the irrigation leachate, caused signif icant morphological changes with longer exposure time, and restricted the biomass production. Mineral concentration differed signif icantly among plant organs, affecting mainly the sodium uptake in stems and fruits. The variables of fruit quality, EC and TDS were favorably modif ied by most treatments.


Sign in / Sign up

Export Citation Format

Share Document