scholarly journals USE OF SPICES AND SPICES AS NATURAL ANTIOXIDANTS AND ANTI-CARCINOGENIC FACTORS

2021 ◽  
pp. 80-85
Author(s):  
O. P. Maidebura ◽  
N. I. Korylchuk ◽  
A. V. Kravetska

Spices and condiments are natural biotechnological agents that exhibit therapeutic activity in the collection of free radicals formed due to oxidative stress, thereby exhibiting both antioxidant and anticancer effects. The aim of the article is a scientific-theoretical and experimental review of the use of spices and condiments as natural antioxidants and anticancer factors, their therapeutic effect on metabolic disorders and overweight.Materials and methods. During the work, an experimental study of the anti-inflammatory effect of a mixture of spices on metabolism in humans (men) with overweight, cardiovascular disease and metabolic disorders.Results and discussion. The study revealed a change in triglyceride levels between treatment groups, and an estimated 13 subjects gave a TG difference of (15 ± 32) mg / dL (mean ± SD) with 80 % potency (α = 0.05). Quantitative assessment of inflammatory responses was performed in 22 subjects because it was not possible to collect enough blood to perform the tests needed to assess inflammatory cytokine secretion and triglyceride levels.Study participants ate foods such as foods high in saturated fats and carbohydrates 1000 kcal, containing 33 % kcal saturated fats and 36% kcal carbohydrates without additional spices; food containing 2 g of a mixture of spices; food containing 6 g of spice mixture, with a washout period ≥ 3 days between days of intervention. The study shows that the percentage of monocytes increased significantly in circulation 240 minutes after eating food containing spices.The study found that the consumption of spices can reduce the negative effects of foods that contain significant levels of carbohydrates and fats in food. Conclusions. A diet containing a mixture of spices was developed to investigate the anti-inflammatory effect of spices in the context of food consumption, and for this purpose spices were chosen that are widely used for daily consumption in the human diet.

Gene ◽  
2018 ◽  
Vol 675 ◽  
pp. 94-101 ◽  
Author(s):  
Lin Dong ◽  
Lei Yin ◽  
Rong Chen ◽  
Yuanbin Zhang ◽  
Shiyao Hua ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2630 ◽  
Author(s):  
Isabel Gálvez ◽  
Leticia Martín-Cordero ◽  
María Dolores Hinchado ◽  
Alberto Álvarez-Barrientos ◽  
Eduardo Ortega

Anomalous immune/inflammatory responses in obesity take place along with alterations in the neuroendocrine responses and dysregulation in the immune/stress feedback mechanisms. Exercise is a potential anti-inflammatory strategy in this context, but the influence of exercise on the β2 adrenergic regulation of the monocyte-mediated inflammatory response in obesity remains completely unknown. The first objective of this study was to analyze the effect of exercise on the inflammatory profile and phenotype of monocytes from obese and lean animals, and the second aim was to determine whether obesity could affect monocytes’ inflammatory response to β2 adrenergic activation in exercised animals. C57BL/6J mice were allocated to different lean or obese groups: sedentary, with acute exercise, or with regular exercise. The inflammatory profile and phenotype of their circulating monocytes were evaluated by flow cytometry in the presence or absence of the selective β2 adrenergic receptor agonist terbutaline. Exercise caused an anti-inflammatory effect in obese individuals and a pro-inflammatory effect in lean individuals. β2 adrenergic receptor stimulation exerted a global pro-inflammatory effect in monocytes from exercised obese animals and an anti-inflammatory effect in monocytes from exercised lean animals. Thus, β2 adrenergic regulation of inflammation in monocytes from exercised animals seems to depend on the inflammatory basal set-point.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yi Xin ◽  
Qin Yuan ◽  
Chaoqi Liu ◽  
Changcheng Zhang ◽  
Ding Yuan

Abstract It has been demonstrated that Chikusetsusaponin IVa (CsIVa) possesses abundant biological activities. Herein, using LPS to establish acute inflammation model of mouse liver and cell line inflammation model, we investigated whether miR-155/GSK-3β regulated NF-κB signaling pathway, and CsIVa exerted anti-inflammatory effects by regulating miR-155/GSK-3β signaling pathway. Our results showed that LPS induced high expression of miR-155 and miR-155 promoted macrophage activation through GSK-3β. In addition, CsIVa inhibited inflammatory responses in LPS-induced mouse liver and RAW264.7 cells. Furthermore, we demonstrated that CsIVa improved the inflammatory response in LPS-induced RAW264.7 cells by inhibiting miR-155, increasing GSK-3β expression, and inhibiting NF-κB signaling pathway. In conclusion, our study reveals that CsIVa suppresses LPS-triggered immune response by miR-155/GSK-3β-NF-κB signaling pathway.


2020 ◽  
Vol 14 (02) ◽  
pp. 294-298
Author(s):  
Maharani Laillyza Apriasari ◽  
Selviana Rizky Pramitha ◽  
Dewi Puspitasari ◽  
Diah Savitri Ernawati

Abstract Objective This study was designed to assess the anti-inflammatory effect of Musa acuminata through the expression of tumor necrosis factor-α (TNF-α) and nuclear factor kappa β (NF-κB) after 3 days of application of Musa acuminata stem extract (MASE) gel on oral mucosal wound. Materials and Methods An experimental study with post-test only control group design was conducted. Twenty male Rattus norvegicus (Wistar) were injured on their left buccal mucosa and treated three times a day with MASE gel of varying concentrations: 0% (as control), MASE 25%, MASE 37.5%, and MASE 50%. On day 3, a biopsy was performed on each mucosal wound for later immunohistochemical analysis for the expressions of TNF-α and NF-κB. Results The highest expression of TNF-α was observed in the control group (13.20 ± 1.79), while the lowest was in the treatment group using 50% MASE (6.40 ± 1.14). Meanwhile the comparison between treatment groups did not highlight any significant difference (p > 0.05). The highest expression of NF-κB was observed in the control group (13.20 ± 1.30), whereas the lowest was in the treatment group using MASE 50% (6.40 ± 1.14). NF-κB was significantly lower in the treatment group using MASE 50% when compared with other treatment groups (p < 0.05). Conclusion Application of MASE on mucosal wound reduces the expression of TNF-α and NF-κB at all concentrations. The anti-inflammatory effect of MASE 50% was the strongest one.


2017 ◽  
Vol 15 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Ala’a Al-Bakheit ◽  
Saeid Abu-Romman ◽  
Ahmad Sharab ◽  
Mohammad Al Shhab

Varthemia iphionoides is a Jordanian medicinal plant with several health-promoting properties, including antibacterial, antioxidant and anticancer activities. However, its anti-inflammatory properties have been poorly investigated up to date. The current study aimed to investigate the anti-inflammatory effect of V. iphionoides by measuring the production of interleukin-6 in response to a pro-inflammatory stimulus (bacterial lipopolysaccharide) in in vitro cell models of human MRC-5 and PC3 cells. We observed a significant reduction in lipopolysaccharide-induced interleukin-6 release in response to V. iphionoides (125 µg/mL) in both non-cancerous fibroblast MRC-5 and prostate cancerous PC3 cells. However, the anti-inflammatory effect of this medicinal plant was stronger when MRC-5 cells were treated with an aqueous extract, while the methanolic extract was more potent in PC3 cells. The effect of V. iphionoides in reducing interleukin-6 production was not due to its cytotoxicity, and future studies are required to elucidate the mechanisms of action by which this medicinal plant modulates inflammatory responses. In conclusion, the results of our study represent the first report of the potential protective effect of water and methanolic extracts of V. iphionoides against pro-inflammatory stimuli in fibroblasts and cancer cells of human origin, and it is critically important to identify the phytochemical compounds responsible for this effect.


2010 ◽  
Vol 13 (4) ◽  
pp. 870-878 ◽  
Author(s):  
Yoon-Jeoung Koh ◽  
Dong-Soo Cha ◽  
Je-Sang Ko ◽  
Hyun-Jin Park ◽  
Hee-Don Choi

2018 ◽  
Vol 43 (4) ◽  
pp. 375-384 ◽  
Author(s):  
Chang-Gu Hyun ◽  
Min-Jin Kim ◽  
Sang Suk Kim ◽  
Ji Hye Ko ◽  
Young Il Moon ◽  
...  

Abstract Objective In this study, we evaluated the anti-inflammatory effect of Shiranuhi flower in RAW 264.7 cells. Methods The effects of the extracts and solvent fractions on cell viability and LPS-induced inflammatory responses were investigated in RAW 264.7 cells. Results The results showed that the ethyl acetate fraction (HEF) significantly decreased NO production in RAW 264.7 cells; however, cell viability was not affected. In addition, ELISA assay revealed that HEF significantly inhibited the productions of PGE2, TNF-α, and IL-6. As well, using Western blot analysis, it was observed that HEF significantly reduced the expression levels of iNOS and COX-2 in a dose dependent manner. Furthermore, we detected a reduced phosphorylation of mitogen-activated protein kinases such as p38, JNK, and ERK1/2. This indicates that HEF regulates LPS-induced inflammatory responses, at least in part, via suppressing the MAPK signaling pathway. Correlation analysis also showed that anti-inflammatory activities were highly correlated to antioxidant activities in this study. Characterization of the Shiranuhi flowers for flavonoid contents using HPLC showed varied quantity of narirutin and hesperidin. Conclusion Overall, the results demonstrate that HEF may be a potential anti-inflammatory agent. In addition, our findings contribute to understanding the molecular mechanism underlying the anti-inflammatory effect of Shiranuhi flower.


2007 ◽  
Vol 76 (1) ◽  
pp. 214-220 ◽  
Author(s):  
Nobuhiko Kamada ◽  
Kenichi Maeda ◽  
Nagamu Inoue ◽  
Tadakazu Hisamatsu ◽  
Susumu Okamoto ◽  
...  

ABSTRACT Although the probiotic Escherichia coli strain Nissle 1917 has been used for the treatment of inflammatory bowel diseases, the precise mechanisms of action of this strain remain unclear. In the present study, we estimated the anti-inflammatory effect of E. coli Nissle 1917 on inflammatory responses in vitro to determine the suppressive mechanism of Nissle 1917 on the inflammatory process. To determine the effect of E. coli Nissle 1917, the human colonic epithelial cell line HCT15 was incubated with or without E. coli Nissle 1917 or another nonpathogenic E. coli strain, K-12, and then tumor necrosis factor alpha (TNF-α)-induced interleukin-8 (IL-8) production from HCT15 cells was assessed. Enzyme-linked immunosorbent assays and real-time quantitative PCR showed that Nissle 1917 treatment suppressed TNF-α-induced IL-8 transcription and production. In addition, results from luciferase assays indicated that Nissle 1917 inhibited IL-8 promoter activity. On the other hand, these anti-inflammatory effects were not seen with E. coli K-12. In addition, heat-killed Nissle 1917 or its genomic DNA did not have this anti-inflammatory effect. Surprisingly, Nissle 1917 did not affect IL-8 transactivation pathways, such as NF-κB activation, nuclear translocation, and DNA binding, or even activation of other transcriptional factors. Furthermore, it also became evident that Nissle 1917 induced the anti-inflammatory effect without contact to epithelial cells. In conclusion, these data indicate that the nonpathogenic E. coli strain Nissle 1917 expresses a direct anti-inflammatory activity on human epithelial cells via a secreted factor which suppresses TNF-α-induced IL-8 transactivation through mechanisms different from NF-κB inhibition.


Sign in / Sign up

Export Citation Format

Share Document