scholarly journals MODELING OF DYNAMOMETER CARDS IN QUASISTEADY OPERATION MODES OF SUCKER ROD PUMPS

2015 ◽  
pp. 51-56
Author(s):  
V. D. Kovshov ◽  
M. E. Sidorov ◽  
S. V. Svetlakova

The article presents the dependences, permitting to calculate the fluid level in the annulus of the sucker rod pump (SRP) at step changing of the beam-pumping unit actions number and to simulate the SRP dynamometer cards . It is shown that the dynamometer cards of SRP measured during normal operation and in the poor inflow conditions enable to assess the fluid level in the annulus, a maximum fluid influx into the borehole and parameters of the reservoir.

2021 ◽  
Author(s):  
Yuzar Aryadi ◽  
Azis Hidayat ◽  
Hilman Lazuardi ◽  
Syahroni Isnanto ◽  
Bonni Ariwibowo ◽  
...  

Abstract SCADA optimization platform is implemented to monitor and evaluate well performance. For Sucker Rod Pump, SCADA Optimization Software can be used to monitor the unit balance and gearbox torque. In some ways, not all required well configuration data for SCADA Optimization Software to do a calculation of counterbalance torque (CBT) for pumping unit balance and gearbox torque evaluation are available. Standard field Counterbalance Effect (CBE) measurement might be performed to calculate the CBT value. However, this standard procedure is limited to well that run on balance condition. For well with unbalance condition, the measured CBE needs to be adjusted by a correction factor which the equation will be presented in this paper. The corrected CBE value from the new equation is then inputted to the SCADA Optimization software to perform day-to-day real-time monitoring of pumping unit balance and gearbox torque. Derivation of the CBE correction factor equation is presented. Validation upon this new equation is performed by comparing the result with electrical measurement on the pumping unit motor. Using the calculated CBT from the new equation, SCADA Optimization Software performs gearbox torque and pumping unit balance analysis based on every collected dynamometer card. Calculated CBT from the new equation provided results in gearbox torque distribution pattern that match with measured electrical parameter distribution along the stroke. This CBT value assists SCADA optimization software to calculate pumping unit balance and gearbox torque. Alarm in the SCADA optimization software that coming from an anomaly on pumping unit balance and gearbox torque help operator to do preventive maintenance so that pumping unit component especially the gearbox could have longer run life.


This article discusses automation of oil wells equipped with sucker–rod pump assemblies. The control method of such assembly is proposed where variation of dynamic fluid level is selected as controllable parameter, the appropriate information can be obtained by mathematic processing of wattmeter graph signal. Simulation results are presented which confirm operability and efficiency of the proposed method of detection and maintenance of optimum dynamic fluid level.


Author(s):  
Edi Purwaka

<p>Tujuan dari penelitian ini untuk menentukan metode yang cocok digunakan untuk suatu sumur produksi, dan salah satu metode yang dipakai adalah pengangkatan buatan dengan pompa, yaitu <em>Sucker Rod Pump</em> (SRP). Metode pemakaian Pompa Angguk atau <em>Sucker Rod Pump</em> (SRP) digunakan apabila suatu sumur minyak sudah tidak dapat lagi mengangkat fluida dari dasar sumur ke atas permukaan secara sembur alam, atau dengan menggunakan metoda yang lain misalnya gas lift tidak memenuhi persyaratan. Sucker rod pump merupakan salah satu metoda pengangkatan buatan, dimana untuk mengangkat minyak kepermukaan digunakan pompa untuk mengangkat minyak kepermukaan digunakan pompa dengan rangkai roda (rod). Pompa ini digunakan untuk sumur-sumur dengan viskositas rendah-medium, tidak ada problem kepasiran, GOR tinggi, sumur-sumur lurus dan fluid level tinggi. Prinsip kerja sucker rod merupakan perpaduan gerak antara peralatan di permukaan dan dibawah permukaan. Dan hasil akhir yang diharapkan dengan menggunakan metode <em>artficial lift</em> ini adalah untuk memaksimalkan produksi sehingga dapat memenuhi target produksi yang telah ditentukan.</p><p><em>The purpose of this research is to determine the suitable method used for a production well, and one of the methods used is artificial lifting with a pump, namely Sucker Rod Pump (SRP). The method of using a Sucker Rod Pump (SRP) is used if an oil well is no longer able to lift fluid from the bottom of the well to the surface by natural spray, or by using other methods such as a gas lift that does not meet the requirements. Sucker rod pump is one of the artificial lifting methods, where to lift the oil to the surface a pump is used to lift the oil to the surface using a pump with a rod chain. This pump is used for wells with low-medium viscosity, no sand problems, high GOR, straight wells and high fluid levels. The working principle of a sucker rod is a combination of motion between equipment on the surface and below the surface. And the expected end result using the artficial lift method is to maximize production so that it can meet predetermined production targets.</em></p>


Author(s):  
A. N. Tsvetkov ◽  
V. Yu. Kornilov ◽  
A. R. Safin ◽  
A. G. Logacheva ◽  
T. I. Petrov ◽  
...  

Modern trends in the development of technology are based on the need for experimental studies of the equipment being developed in laboratory conditions with the maximum approximation of the operating modes to real ones. Such studies are impossible without the development of specialized stands with test automation systems. Automation of processes involves the organization of measuring channels as part of a stand using analog-to-digital conversion (ADC), digital-to-analog conversion (DAC), digital-todigital conversion (DDC) and the development of a hardware-software complex (HSC) based on high-speed computing devices. As part of the project to create new high-tech equipment, the specialists of FSBEI HE “KSPEU” and JSC “ChEAZ” developed and created an experimental stand designed to verify and confirm the correctness of the selected structural and circuit solutions used in the design of a synchronous valve electric motor (SVEM) and rod control station borehole pumping unit (RC SBPU). The object of experimental research was the prototype and prototype electric drives of oil pumping units, as well as their components: SVEM and RC SBPU. The article discusses the ways of organizing the measuring and control channels of the measuring and information system of the experimental bench, which allows to study samples of synchronous valve motors and control stations of the sucker rod pump unit in the regimes that are as close as possible to real field conditions simulating the operation of the oil pumping unit of the sucker rod pump unit. Thus, in the experimental stand, analog, discrete and digital control and control channels are implemented.


Dependability ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 22-26
Author(s):  
Z. E. Eyvazova ◽  
T. E. Farajov

The paper notes that as the depths of operated wells grow, the application of cable and pulley mechanisms becomes preferable as compared to the existing pumpjacks. A generalized theoretical analysis of the kinematics of cable and pulley drives is set forth. The authors present the general theoretical analysis of the kinematics of the above mechanisms, as well as the results of computer calculations based of the developed equations for a number of cases. Further analysis of the results showed that the crank mechanisms of a rope pulley have “smooth” kinematics. The research resulted in a proposed invention of the design of mast-type oil well sucker-rod pump drive with lower steel intensity and power consumption that would allow increasing the performance of sucker-rod pumps.The Purpose of this article consists in finding a utility model of a pump for the well rod in order to ensure the environmental safety of the equipment. That is achieved by lightening the metal structure of the pump with rotary stem and energy consumption is reduced. In the context of this problem, some calculations were performed in order to prove the system’s dependability. Based on the performed calculations it was established that the light structure can be used instead of the old heavy structure being its environmentally safe version. Experimental studies conducted by AzINMASH Research and Design Institute of Petroleum Engineering (Baku, Azerbaijan) indicate the feasibility of normal operation of sucker-rod pumps under the condition that n∙S = 54÷60 m/min. The authors examined the dependence between the peak output Q and the number of strokes n for various standard pumpjack sizes. The analysis of the parameters shown that the value of the product n∙S in the existing pumpjacks is below the recommendations based on experimental data, i.e. there is a tangible opportunity of increasing the productivity by extending the stroke of the rod hanger center, since well pump barrels may be as long as 6 to 7 meters. Estimates show that while studying the kinematics of long-stroke drives the changes in the length of the rope may be practically disregarded due to the displacement of the rope-to-pulley contact point. This simplifies the formulas that describe the kinematics of this type of long-stroke drives. Using the resulting formulas, comparative computer calculations for various cases were performed. It is shown that cable and pulley mechanisms have “softer” kinematics. The calculations confirmed the advisability of modification of the pump’s design that ensured reduced pollution of environment and energy savings. The future world will need renewable sources of energy, more power-efficient oil and gas production, minimal or zero pollution of the environment, thus the proposed solution appears to be of relevance. The authors propose a more productive design of sucker-rod pump that is easy to install and maintain at oil and gas production facilities. That can be achieved based on the calculations mentioned above. 


2014 ◽  
Author(s):  
Haitao Yang ◽  
Lijun Mu ◽  
Yaqin Zeng ◽  
Wei Huang ◽  
Hong Xin ◽  
...  

Author(s):  
O.Ya. Dubey

In order to calculate the working mode of a sucker-rod pump driven by the beam pumping unit and a jet pump during their simultaneous operation, pressure and temperature distribution along the wellbore from the bottom to the wellhead is determined for the real oil well 753-D "Dolynanaftogaz" Field Office. To calculate these parameters an improved methodology based on known Poettmann-Carpenter and Baxendel methods is used. As a result, the imperfection of these methods was eliminated, namely the assumption that pressure and temperature behavior along the wellbore is linear. This led to obtaining results which are up to 23% more accurate. In addition, using the algorithm for determining the density of perfect (ideal) liquid-gas mixture, the author has calculated the velocities of gas-water-oil and water-oil mixtures for a number of sections along the production tubing at different angles of the crank position in the beam pumping unit. The indicated values make it possible to determine the depth of the oilgas jet pump location in the well, and, consequently, the parameters at its input (pressure, temperature, velocity of the liquid-gas mixture, its density, etc.). Besides, the author studies the dependence which describes the behavior of the liquid-gas mixture density along the wellbore, as well as the relations between the density of the free oil gas, thevolumetric consumption gas content of the flow and the placement of the section under consideration. All of the above-mentioned algorithms were implemented using developed computer programs. The obtained results give a possibility to choose the location of the jet pump in the well which is the most advantageous one for ensuring maximum pressure reduction and the decrease in the stem load.


2021 ◽  
Vol 246 ◽  
pp. 640-649
Author(s):  
Kamil Urazakov ◽  
Veronika Molchanova ◽  
Pavel Tugunov

The efficiency of sucker rod pump installations, which have become widespread in mechanized lift practice, is largely determined by the balance of the drive. During the operation of sucker rod installations, the balance of loads acting on the rod string and the drive can change significantly due to changes in the dynamic fluid level, which leads to a decrease in balance and an increase in loads on the pumping equipment units. The increase and decrease in the dynamic level in accordance with the pumping and accumulation cycle occurs in wells operating in the periodic pumping mode. It is shown that during the operation of equipment in a periodic mode, fluctuations in the dynamic level and, accordingly, in the loads acting on the nodes occur. This leads to the need for dynamic adjustment of the balancing weights to ensure the balance of the pumping unit. A system for automatic balancing of the rod drive has been developed, including a balancing counterweight, an electric motor that moves the load along the balance beam, a propeller and a computing unit. To study the effectiveness of the proposed device, a complex mathematical model of the joint operation of the reservoir - well - sucker rod pump - rod string – pumping unit has been developed. It is shown that due to the dynamic adjustment of the balance counterweight position, the automatic balancing system makes it possible to significantly reduce the amplitude value of the torque on the crank shaft (in comparison with the traditional rod installation) and provide a more uniform load of the electric motor. Equalization of torque and motor load reduces the power consumption of the unit.


2011 ◽  
Vol 3 (5) ◽  
pp. 274-276
Author(s):  
Siraj Bhatkar ◽  
◽  
Yusufuddin Nehri ◽  
Fahad Shaikh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document