scholarly journals Etheropoliamide depressor additives for oil fuel fractions

2019 ◽  
pp. 153-159
Author(s):  
A. M. Glazunov ◽  
A. G. Mozyrev ◽  
S. P. Semuhin ◽  
E. O. Zemlyanskiy

Improving the low-temperature properties of oil fractions, in particular diesel fuels using depressant additives, is one of the simplest and most effective methods. The synthesis of additives based on the use of domestic industrial raw materials. The article presents the data on the development of polyamide depressant additives; we used pyromellitic dianhydride (it is a product derived from polyhydric acid) as a base.  

Author(s):  
A. Trotsenko ◽  
A. Grigorov ◽  
V. Nazarov

It is known that one of the ways to increase the level of operational properties of diesel fuels is the injection of special components – additives – into their composition. Today this way is a quite rational and economically feasible for Ukraine, especially in the absence of high-quality oil raw materials for the production of fuels, which in turn leads to a significant dependence on imports. The range of additives used in diesel fuels is very diverse, which makes it difficult to select a balanced package, especially considering their effectiveness and compatibility with each other. This procedure can be a bit simplified by adding poly-functional additives to diesel fuel, the use of which is devoted to a lot of periodical literature. Based on the relevance of the direction of scientific research related to improving the properties of diesel fuel, which is produced at the enterprises of the oil refining industry in Ukraine, we proposed to use a substance belonging to the class of aromatic diazocompounds and having polyfunctional properties in the composition of diesel fuels. Thus, this additive was added to a straight-run diesel fraction (240–350 °C) in an amount of up to 1.0%, followed by a study of the properties of the resulting mixture. Studies have shown that the additive significantly improves low-temperature properties (by -10 °C), contributes to an increase in fuel density and viscosity, and additionally gives diesel fuel a stable color (from yellow to orange). Consequently, it can be used in the composition of commercial diesel fuels with improved performance properties.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 194
Author(s):  
Joanna Pawłat ◽  
Piotr Terebun ◽  
Michał Kwiatkowski ◽  
Katarzyna Wolny-Koładka

Sterilization of municipal waste for a raw material for the production of refuse-derived fuel and to protect surface and ground waters against biological contamination during transfer and storage creates a lot of problems. This paper evaluates the antimicrobial potential of non-equilibrium plasma in relation to the selected groups of microorganisms found in humid waste. The proposed research is to determine whether mixed municipal waste used for the production of alternative fuels can be sterilized effectively using low-temperature plasma generated in a gliding arc discharge reactor in order to prevent water contamination and health risk for working staff. This work assesses whether plasma treatment of raw materials in several process variants effectively eliminates or reduces the number of selected groups of microorganisms living in mixed municipal waste. The presence of vegetative bacteria and endospores, mold fungi, actinobacteria Escherichia coli, and facultative pathogens, i.e., Staphylococcus spp., Salmonella spp., Shigella spp., Enterococcus faecalis and Clostridium perfringens in the tested material was microbiologically analyzed. It was found that the plasma treatment differently contributes to the elimination of various kinds of microorganisms in the analyzed raw materials. The effectiveness of sterilization depended mainly on the time of raw materials contact with low-temperature plasma. The results are very promising and require further research to optimize the proposed hygienization process.


2011 ◽  
Vol 236-238 ◽  
pp. 708-714 ◽  
Author(s):  
Hong An ◽  
Shu Gang Gao ◽  
Shuang Li ◽  
Yan Xin Xie

The n-tetradecylacrylate-vinyl acetate copolymer (PPV) was prepared from n-tetradecylacrylate and vinyl acetate. The PPV was employed as pour point depressant to improve the low-temperature fluidity of the -20# diesel from Daqing Petrochemical Company. The result indicated that the solidification (SP) and the cold filter plugging point (CFPP) were affected largely by PPV. And when mass fraction of PPV -14(copolymerization conditions: 80 °C,w(benzoyl peroxide)1%(total weight of raw materials), n(vinyl acetate)∶n(n- tetradecanolacrylate) = 4∶1 ) in diesel fuel was 0.1%wt, the SP reduced by 15.0 °C, the CFPP reduced by 6.0 °C simultaneously; We analysise the different molecular weight of PPV-14, and discover that the molecular weight of PPV-14 is ralated to the the low-temperature fluidity of the -20# diesel from Daqing Petrochemical Company. When mass fraction of PPV -14(molecular weight is 15000, distribution coefficient is 3.11) in diesel fuel was 0.1% wt, the SP reduced by 18.0 °C, the CFPP reduced by 7.0 °C, simultaneously.


2021 ◽  
Author(s):  
Wei Deng ◽  
Xuepeng Wang ◽  
Syed Shatir A. Syed-Hassan ◽  
Chun Ho Lam ◽  
Xun Hu ◽  
...  

2013 ◽  
Vol 745-746 ◽  
pp. 673-678 ◽  
Author(s):  
Wei Hui Jiang ◽  
Zhi Fang Xu ◽  
Jian Min Liu ◽  
Qing Xia Zhu ◽  
Quan Zhang

Aluminum titanate (Al2TiO5) powder has been synthesized at low temperature via nonhydrolytic sol-gel method by using aluminum powder as aluminum source, titanium tetrachloride as titanium source, anhydrous ethanol as oxygen donor with different catalysts. The phase transformation of aluminum titanate xerogel powder during heat treatment and the influence of the mixing orders of raw materials, catalyst kinds on the synthesis of aluminum titanate were investigated by means of differential-thermal analysis (DTA-TG), X-ray diffraction (XRD), transmission electron microscope (TEM). The results indicated that aluminum titanate powder was easily synthesized at 750 °C by using AlCl3 as catalyst with a mixing order of adding TiCl4 before AlCl3 into aluminum alcohol mixture. The catalytic order of the different catalysts in the preparation process of aluminum titanate is: FeCl3> AlCl3> MgCl2. The catalyst promoted the activation of metal aluminum powder and played a major role in the synthesis of aluminum titanate powder at low temperature via nonhydrolytic sol-gel method.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 260
Author(s):  
Jong-Beom Park ◽  
Jun-Su Choi ◽  
Hye-Won Park ◽  
Sae-Byuk Lee ◽  
Heui-Dong Park

Yakju, a traditional fermented beverage in Korea, is prepared using various raw materials and methods, and, hence, exhibits various characteristics. Low-temperature-fermented yakju can inhibit the growth of undesirable bacteria and is known for its unique flavor and refreshing taste. To increase the production of volatile aromatic compounds in yakju, strains with strong resistance to low temperatures and excellent production of volatile aromatic compounds were screened from indigenous fruits (grape, persimmon, plum, aronia, wild grape) and nuruk in Korea. One Saccharomyces cerevisiae and three non-Saccharomyces strains were finally screened, and yakju was fermented at 15 °C through mono/co-culture. The analysis of volatile aromatic compounds showed that S. cerevisiae W153 produced 1.5 times more isoamyl alcohol than the control strain and reduced the production of 2,3-butanediol by a third. Similarly, a single culture of Pichia kudriavzevii N373 also produced 237.7 mg/L of ethyl acetate, whereas Hanseniaspora vineae G818 produced ~11 times greater levels of 2-phenethyl acetate than the control. Alternatively, Wickerhamomyces anomalus A159 produced 95.88 mg/L of ethyl hexadecanoate. During principal component analysis, we also observed that the co-culture sample exhibited characteristics of both volatile aroma compounds of the single cultured sample of each strain. Our results suggest that yakju with unique properties can be prepared using various non-Saccharomyces strains.


Author(s):  
E. A. Burov ◽  
◽  
L.V. Ivanova ◽  
V. N. Koshelev ◽  
D. A. Sandzhieva ◽  
...  

The paper reviews the structural and group composition of three basic winter diesel fuels and its influence on the low-temperature and lubricating properties of fuels. It is shown that a high content of saturated hydrocarbons, primarily medium-molecular n-alkanes, and arenes with a higher proportion of substitution leads to a deterioration of low-temperature properties. A decrease in the proportion of medium-molecular alkanes and even a slight increase in the content of bi - and polycyclic aromatic hydrocarbons impairs the lubricating properties of the fuel.The influence of the component composition of diesel fuels on the effectiveness of anti-wear and depressor-dispersing additives was noted. The study of compatibility of additives of different functional actions revealed that the anti-wear additive based on fatty acids of tallow oil does not affect the activity of the depressant-dispersing additive, while the combined use of these additives slightly worsens the lubricating properties, but does not lead this indicator beyond the established standards.


Sign in / Sign up

Export Citation Format

Share Document