scholarly journals Utility of animal models of Alzheimer’s disease in food bioactive research

2021 ◽  
Vol 13 ◽  
Author(s):  
Klaus W. Lange

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by globally impaired cognition. AD research in animals has shown a substantial deficit in translational relevance. The most extensively used transgenic mouse models overexpress human genes associated with rare familial early-onset AD, which results in the formation of amyloid plaques. However, the most common form of AD (late-onset sporadic AD) is a multifactorial disorder involving different cytotoxic factors, including neurofibrillary pathology. Transgenic mice studies have been valuable in elucidating pathogenetic mechanisms that may be relevant to human AD. However, their utility in the development of novel treatment strategies and as preclinical testbeds of new drugs has been unsatisfactory. Animal models have so far failed to demonstrate predictive value in regard to novel therapies of AD, including the use of bioactive food components. While many therapeutic approaches assessed in animals have shown promising results, attempts to translate these findings to people with AD have been disappointing. Food scientists should be aware that the available animal models appear to be unable to predict clinical success in humans. Therefore, food bioactive research should focus on human-centric preventive approaches to AD in clinically meaningful settings rather than on highly questionable preclinical research in animals.

2020 ◽  
Vol 12 ◽  
Author(s):  
Robert A. Culibrk ◽  
Mariah S. Hahn

Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia—the principle immune cells of the brain—characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.


2018 ◽  
Vol 16 (1) ◽  
pp. 49-55 ◽  
Author(s):  
J. Stenzel ◽  
C. Rühlmann ◽  
T. Lindner ◽  
S. Polei ◽  
S. Teipel ◽  
...  

Background: Positron-emission-tomography (PET) using 18F labeled florbetaben allows noninvasive in vivo-assessment of amyloid-beta (Aβ), a pathological hallmark of Alzheimer’s disease (AD). In preclinical research, [<sup>18</sup>F]-florbetaben-PET has already been used to test the amyloid-lowering potential of new drugs, both in humans and in transgenic models of cerebral amyloidosis. The aim of this study was to characterize the spatial pattern of cerebral uptake of [<sup>18</sup>F]-florbetaben in the APPswe/ PS1dE9 mouse model of AD in comparison to histologically determined number and size of cerebral Aβ plaques. Methods: Both, APPswe/PS1dE9 and wild type mice at an age of 12 months were investigated by smallanimal PET/CT after intravenous injection of [<sup>18</sup>F]-florbetaben. High-resolution magnetic resonance imaging data were used for quantification of the PET data by volume of interest analysis. The standardized uptake values (SUVs) of [<sup>18</sup>F]-florbetaben in vivo as well as post mortem cerebral Aβ plaque load in cortex, hippocampus and cerebellum were analyzed. Results: Visual inspection and SUVs revealed an increased cerebral uptake of [<sup>18</sup>F]-florbetaben in APPswe/ PS1dE9 mice compared with wild type mice especially in the cortex, the hippocampus and the cerebellum. However, SUV ratios (SUVRs) relative to cerebellum revealed only significant differences in the hippocampus between the APPswe/PS1dE9 and wild type mice but not in cortex; this differential effect may reflect the lower plaque area in the cortex than in the hippocampus as found in the histological analysis. Conclusion: The findings suggest that histopathological characteristics of Aβ plaque size and spatial distribution can be depicted in vivo using [<sup>18</sup>F]-florbetaben in the APPswe/PS1dE9 mouse model.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1647
Author(s):  
Anna Bocharova ◽  
Kseniya Vagaitseva ◽  
Andrey Marusin ◽  
Natalia Zhukova ◽  
Irina Zhukova ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disorder, and represents the most common cause of dementia. In this study, we performed several different analyses to detect loci involved in development of the late onset AD in the Russian population. DNA samples from 472 unrelated subjects were genotyped for 63 SNPs using iPLEX Assay and real-time PCR. We identified five genetic loci that were significantly associated with LOAD risk for the Russian population (TOMM40 rs2075650, APOE rs429358 and rs769449, NECTIN rs6857, APOE ε4). The results of the analysis based on comparison of the haplotype frequencies showed two risk haplotypes and one protective haplotype. The GMDR analysis demonstrated three significant models as a result: a one-factor, a two-factor and a three-factor model. A protein–protein interaction network with three subnetworks was formed for the 24 proteins. Eight proteins with a large number of interactions are identified: APOE, SORL1, APOC1, CD33, CLU, TOMM40, CNTNAP2 and CACNA1C. The present study confirms the importance of the APOE-TOMM40 locus as the main risk locus of development and progress of LOAD in the Russian population. Association analysis and bioinformatics approaches detected interactions both at the association level of single SNPs and at the level of genes and proteins.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Troy T. Rohn

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by a progressive loss of memory and cognitive skills. Although much attention has been devoted concerning the contribution of the microscopic lesions, senile plaques, and neurofibrillary tangles to the disease process, inflammation has long been suspected to play a major role in the etiology of AD. Recently, a novel variant in the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2) has been identified that has refocused the spotlight back onto inflammation as a major contributing factor in AD. Variants in TREM2 triple one's risk of developing late-onset AD. TREM2 is expressed on microglial cells, the resident macrophages in the CNS, and functions to stimulate phagocytosis on one hand and to suppress cytokine production and inflammation on the other hand. The purpose of this paper is to discuss these recent developments including the potential role that TREM2 normally plays and how loss of function may contribute to AD pathogenesis by enhancing oxidative stress and inflammation within the CNS. In this context, an overview of the pathways linking beta-amyloid, neurofibrillary tangles (NFTs), oxidative stress, and inflammation will be discussed.


2018 ◽  
Author(s):  
Stephen A. Semick ◽  
Rahul A. Bharadwaj ◽  
Leonardo Collado-Torres ◽  
Ran Tao ◽  
Joo Heon Shin ◽  
...  

AbstractBackgroundLate-onset Alzheimer’s disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD represented as variation in DNA methylation (DNAm), we surveyed 420,852 DNAm sites from neurotypical controls (N=49) and late-onset AD patients (N=24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum).ResultsWe identified 858 sites with robust differential methylation, collectively annotated to 772 possible genes (FDR<5%, within 10kb). These sites were overrepresented in AD genetic risk loci (p=0.00655), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR<5%). We analyzed corresponding RNA-seq data to prioritize 130 genes within 10kb of the differentially methylated sites, which were differentially expressed and had expression levels associated with nearby DNAm levels (p<0.05). This validated gene set includes previously reported (e.g. ANK1, DUSP22) and novel genes involved in Alzheimer’s disease, such as ANKRD30B.ConclusionsThese results highlight DNAm changes in Alzheimer’s disease that have gene expression correlates, implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.


Genetika ◽  
2013 ◽  
Vol 45 (2) ◽  
pp. 503-514 ◽  
Author(s):  
Jalal Gharesouran ◽  
Maryam Rezazadeh ◽  
Mohaddes Mojtaba

Alzheimer's disease is a complex neurodegenerative disorder characterized by memory and cognitive impairment and is the leading cause of dementia in the elderly. The aim of our study was to examine the polymorphic DNA markers CCR2 (+190 G/A), CCR5?32, TNF-? (-308 G/A), TNF-? (-863 C/A) and CALHM1 (+394 C/T) to determine the relationship between these polymorphisms and the risk of late onset Alzheimer's disease in the population of Eastern Azerbaijan of Iran. A total of 160 patient samples and 163 healthy controls were genotyped by PCR-RFLP and the results confirmed using bidirectional sequencing. Statistical analysis of obtained data revealed non-significant difference between frequency of CCR5?32 in case and control groups. The same result was observed for TNF-? (-863 C/A) genotype and allele frequencies. Contrary to above results, significant differences were detected in frequency of TNF-? (-308 G/A) and CCR2-64I genotypes between the cases and healthy controls. A weak significant difference observed between allele and genotype frequencies of rs2986017 in CALHM1 (+394 C/T; P86L) in patient and control samples. It can be concluded that the T allele of P86L variant in CALHM1 & +190 G/A allele of CCR2 have a protective role against abnormal clinical features of Alzheimer's disease.


2020 ◽  
Vol 19 (2) ◽  
pp. 136-151
Author(s):  
Shivani Singh ◽  
Meenakshi Dhanawat ◽  
Sumeet Gupta ◽  
Deepak Kumar ◽  
Saloni Kakkar ◽  
...  

: Alzheimer’s disease (AD) is a multifarious and developing neurodegenerative disorder. The treatment of AD is still a challenge and availability of drug therapy on the basis of symptoms is not up to the mark. In the context of existence, which is getting worse for the human brain, it is necessary to take care of all critical measures. The disease is caused due to multidirectional pathology of the body, which demands the multi-target-directed ligand (MTDL) approach. This gives hope for new drugs for AD, summarized here in with the pyrimidine based natural product inspired molecule as a lead. The review is sufficient in providing a list of chemical ingredients of the plant to cure AD and screen them against various potential targets of AD. The synthesis of a highly functionalized scaffold in one step in a single pot without isolating the intermediate is a challenging task. In few examples, we have highlighted the importance of this kind of reaction, generally known as multi-component reaction. Multi-component is a widely accepted technique by the drug discovery people due to its high atom economy. It reduces multi-step process to a one-step process, therefore the compounds library can be made in minimum time and cost. This review has highlighted the importance of multicomponent reactions by giving the example of active scaffolds of pyrimidine/fused pyrimidines. This would bring importance to the fast as well as smart synthesis of bio-relevant molecules.


2021 ◽  
Author(s):  
Negar Sadat Soleimani Zakeri ◽  
Saeid Pashazadeh ◽  
Habib MotieGhader

Abstract Background: Alzheimer's disease (AD) is known as a critical neurodegenerative disorder. It worsens as symptoms concerning dementia grow severe over the years. Due to the globalization of Alzheimer’s disease, its prevention and treatment is vital. This study proposes a method to extract substantial gene complexes and accomplish an enrichment analysis to introduce the most significant biological procedures. The next step is extracting the drugs related to AD and introduce some new drugs which may be useful for this disease. Results: To this end, protein-protein interactions (PPI) network was utilized to extract five meaningful gene complexes functionally interconnected. The next step was to construct a five bipartite network representing the genes of each group and their target miRNAs. Finally, a complete network including all the genes related to each gene complex group and genes’ target drug was illustrated. medical studies and publications were analyzed thoroughly to introduce AD-related drugs. Conclusions: This analysis proves the accuracy of the proposed method in this study. Then, new drugs were introduced that can be experimentally examined as future work. RALOXIFENE, GENTIAN VIOLET are two new drugs, which have not been introduced as AD-related drugs in previous scientific and medical studies, recommended by the method of this study. These two drugs.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Christoph Preuss ◽  
◽  
Ravi Pandey ◽  
Erin Piazza ◽  
Alexander Fine ◽  
...  

Abstract Background Late-onset Alzheimer’s disease (LOAD) is the most common form of dementia worldwide. To date, animal models of Alzheimer’s have focused on rare familial mutations, due to a lack of frank neuropathology from models based on common disease genes. Recent multi-cohort studies of postmortem human brain transcriptomes have identified a set of 30 gene co-expression modules associated with LOAD, providing a molecular catalog of relevant endophenotypes. Results This resource enables precise gene-based alignment between new animal models and human molecular signatures of disease. Here, we describe a new resource to efficiently screen mouse models for LOAD relevance. A new NanoString nCounter® Mouse AD panel was designed to correlate key human disease processes and pathways with mRNA from mouse brains. Analysis of the 5xFAD mouse, a widely used amyloid pathology model, and three mouse models based on LOAD genetics carrying APOE4 and TREM2*R47H alleles demonstrated overlaps with distinct human AD modules that, in turn, were functionally enriched in key disease-associated pathways. Comprehensive comparison with full transcriptome data from same-sample RNA-Seq showed strong correlation between gene expression changes independent of experimental platform. Conclusions Taken together, we show that the nCounter Mouse AD panel offers a rapid, cost-effective and highly reproducible approach to assess disease relevance of potential LOAD mouse models.


Sign in / Sign up

Export Citation Format

Share Document