scholarly journals Investigation of five polymorphic DNA markers associated with late onset Alzheimer disease

Genetika ◽  
2013 ◽  
Vol 45 (2) ◽  
pp. 503-514 ◽  
Author(s):  
Jalal Gharesouran ◽  
Maryam Rezazadeh ◽  
Mohaddes Mojtaba

Alzheimer's disease is a complex neurodegenerative disorder characterized by memory and cognitive impairment and is the leading cause of dementia in the elderly. The aim of our study was to examine the polymorphic DNA markers CCR2 (+190 G/A), CCR5?32, TNF-? (-308 G/A), TNF-? (-863 C/A) and CALHM1 (+394 C/T) to determine the relationship between these polymorphisms and the risk of late onset Alzheimer's disease in the population of Eastern Azerbaijan of Iran. A total of 160 patient samples and 163 healthy controls were genotyped by PCR-RFLP and the results confirmed using bidirectional sequencing. Statistical analysis of obtained data revealed non-significant difference between frequency of CCR5?32 in case and control groups. The same result was observed for TNF-? (-863 C/A) genotype and allele frequencies. Contrary to above results, significant differences were detected in frequency of TNF-? (-308 G/A) and CCR2-64I genotypes between the cases and healthy controls. A weak significant difference observed between allele and genotype frequencies of rs2986017 in CALHM1 (+394 C/T; P86L) in patient and control samples. It can be concluded that the T allele of P86L variant in CALHM1 & +190 G/A allele of CCR2 have a protective role against abnormal clinical features of Alzheimer's disease.

Bioimpacts ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 219-225 ◽  
Author(s):  
Elham Mehdizadeh ◽  
Mohammad Khalaj-Kondori ◽  
Zeinab Shaghaghi-Tarakdari ◽  
Saeed Sadigh-Eteghad ◽  
Mahnaz Talebi ◽  
...  

Introduction: Alzheimer’s disease (AD), which is a progressive neurodegenerative disorder, causes structural and functional brain disruption. MS4A6A, TREM2, and CD33 gene polymorphisms loci have been found to be associated with the pathobiology of late-onset AD (LOAD). In the present study, we tested the hypothesis of association of LOAD with rs983392, rs75932628, and rs3865444 polymorphisms in MS4A6A, TREM2, CD33 genes, respectively.Methods: In the present study, 113 LOAD patients and 100 healthy unrelated age- and gender-matched controls were selected. DNA was extracted from blood samples by the salting-out method and the genotyping was performed by RFLP-PCR. Electrophoresis was carried out on agarose gel. Sequencing was thereafter utilized for the confirmation of the results. Results: Only CD33 rs3865444 polymorphism revealed a significant difference in the genotypic frequencies of GG (P = 0.001) and GT (P = 0.001), and allelic frequencies of G (P = 0.033) and T (P = 0.03) between LOAD patients and controls. Conclusion: The evidence from the present study suggests that T allele of CD33 rs3865444 polymorphism is associated with LOAD in the studied Iranian population.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Fabio Coppedè ◽  
Pierpaola Tannorella ◽  
Gloria Tognoni ◽  
Silvia Bagnoli ◽  
Paolo Bongioanni ◽  
...  

Alzheimer’s disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. Polymorphisms of genes involved in folate metabolism have been frequently suggested as risk factors for sporadic AD. A common c.80G>A polymorphism (rs1051266) in the gene coding for the reduced folate carrier (SLC19A1gene, commonly known asRFC-1gene) was investigated as AD risk factor in Asian populations, yielding conflicting results. We screened a Caucasian population of Italian origin composed of 192 sporadic AD patients and 186 healthy matched controls, for the presence of theRFC-1c.80G>A polymorphism, and searched for correlation with circulating levels of folate, homocysteine, and vitamin B12. No difference in the distribution of allele and genotype frequencies was observed between AD patients and controls. No correlation was observed among the genotypes generated by theRFC-1c.80G>A polymorphism and circulating levels of folate, homocysteine, and vitamin B12 either in the whole cohort of subjects or after stratification into clinical subtypes. Present results do not support a role for theRFC-1c.80G>A polymorphism as independent risk factor for sporadic AD in Italian Caucasians.


2021 ◽  
Author(s):  
Ivo Ilvan Kerppers ◽  
Andressa Panegalli Hosni ◽  
Andressa Leticia Miri ◽  
Maria Elvira Ribeiro Cordeiro ◽  
Flávio Klinpovous Kerppers ◽  
...  

Alzheimer’s disease (AD) was defined as a neurodegenerative disorder, being more affected in the elderly. It is estimated that every 3.2 seconds a person in the world is affected by the high disease that rate in 2050 to 1 second. Therefore, research has been carried out on new therapeutic approaches, such as Transcranial Photobiomodulation and treatment based on antioxidants, such as Resveratrol. Therefore, the objective is to conduct a literature review on these two approaches and their effects on the treatment of AD. It was carried out according to the PRISMA recommendation and the articles were selected according to the years of publication (between 2015 and 2020) and extracted from the following databases: Science Direct, PubMed PMC, Scopus, PubMed NCBI, SciELO, LILACS, MEDLINE and PEDro. In several studies it has been reported that both therapies provide improvements at the molecular and behavioral level, recovering brain functions, acting in a neuroprotective way, improving quality of life, with few adverse effects and in a less invasive way. Thus, both treatments have numerous benefits that can be useful in the treatment of AD. However, there is a need for further research that includes interventions with greater specificity and control, so that they are defined as ideal doses and treatment protocols.


2021 ◽  
Vol 72 (2) ◽  
pp. 5-10
Author(s):  
Violeta Jovanović ◽  
Jelica Despotović ◽  
Mario Balo ◽  
Ivan Zaletel ◽  
Sanja Despotović ◽  
...  

Introduction: Alzheimer's disease is the most common neurodegenerative disorder, characterized by the formation of amyloid plaques and the neurofibrillary tangles in the brain of an ill person, leading to neuronal damage and loss. Activation of astrocytes and astrogliosis occurs along with this process. Due to ethical limitations in working with human tissue, numerous transgenic animal models have been developed to study the pathogenesis of these processes. Early Ab deposition is observed in the cortex and the hippocampus. Aim: This study aimed to determine the difference in the presence of GFAP positive cells in the hippocampus between transgenic 5xFAD mice aged 36 weeks and their corresponding controls. Material and Methods: The 5xFAD mice model of Alzheimer's disease was used, characterized by early formation of amyloid plaques but without the presence of neurofibrillar tangles. Transgenic and control animals were sacrificed at 36 weeks of age. The visualization of GFAP-positive cells in the hippocampus of their brains was done by using immunohistochemistry and antibody for glial fibrillary acidic protein - GFAP, the major marker of astrocytes. Quantification of immuno-reactivity was done by using the Icy software system. Results: There was a statistically significant difference in the expression of GFAP in the dentate gyrus and the granular zone of the hippocampus between the transgenic and control group at 36 weeks of age, while the significant change in the CA1-3 regions was not observed between investigated groups. Conclusion: Obtained results confirm the involvement of astrogliosis in the pathophysiology of Alzheimer's disease and indicate an earlier occurrence of astrogliosis in the dentate gyrus and granular zone, in relation to other regions of the hippocampus, in the 36-week-old 5xFAD mice.


2020 ◽  
Vol 20 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Sharifa Hasana ◽  
Md. Farhad Hossain ◽  
Md. Siddiqul Islam ◽  
Tapan Behl ◽  
...  

: Alzheimer’s disease (AD) is the most common form of dementia in the elderly and this complex disorder is associated with environmental as well as genetic components. Early-onset AD (EOAD) and late-onset AD (LOAD, more common) are major identified types of AD. The genetics of EOAD is extensively understood with three genes variants such as APP, PSEN1, and PSEN2 leading to disease. On the other hand, some common alleles including APOE are effectively associated with LOAD identified but the genetics of LOAD is not clear to date. It has been accounted that about 5% to 10% of EOAD patients can be explained through mutations in the three familiar genes of EOAD. The APOE ε4 allele augmented the severity of EOAD risk in carriers, and APOE ε4 allele was considered as a hallmark of EOAD. A great number of EOAD patients, who are not genetically explained, indicate that it is not possible to identify disease- triggering genes yet. Although several genes have been identified through using the technology of next-generation sequencing in EOAD families including SORL1, TYROBP, and NOTCH3. A number of TYROBP variants were identified through exome sequencing in EOAD patients and these TYROBP variants may increase the pathogenesis of EOAD. The existence of ε4 allele is responsible for increasing the severity of EOAD. However, several ε4 allele carriers live into their 90s that propose the presence of other LOAD genetic as well as environmental risk factors that are not identified yet. It is urgent to find out missing genetics of EOAD and LOAD etiology to discover new potential genetics facets which will assist to understand the pathological mechanism of AD. These investigations should contribute to developing a new therapeutic candidate for alleviating, reversing and preventing AD. This article based on current knowledge represents the overview of the susceptible genes of EOAD, and LOAD. Next, we represent the probable molecular mechanism which might elucidate the genetic etiology of AD and highlight the role of massively parallel sequencing technologies for novel gene discoveries.


2021 ◽  
Vol 53 ◽  
pp. 102378
Author(s):  
Jan Raska ◽  
Hana Klimova ◽  
Katerina Sheardova ◽  
Veronika Fedorova ◽  
Hana Hribkova ◽  
...  

2008 ◽  
Vol 24 (3) ◽  
pp. 175-179 ◽  
Author(s):  
Renato Scacchi ◽  
Giuseppe Gambina ◽  
Elisabetta Broggio ◽  
Maria Ruggeri ◽  
Rosa Maria Corbo

The human endothelin-converting enzyme (ECE) is involved inβ-amyloid synthesis and regulation of the endothelin-1 (ET-1) vasoconstricting peptide. We investigated the distribution of the C-338A polymorphism of the ECE-1b gene in sporadic late-onset Alzheimer’s disease (LOAD) and in coronary artery disease (CAD) to verify its role in the onset of these two complex diseases. Two cohorts of 458 Italian Caucasian LOAD patients and 165 CAD patients were examined for the C-338A polymorphism and compared with respective control samples (260 and 106 subjects, respectively). The A allele was less present in LOAD patients than in controls, but an at limits statistically significant difference was achieved only in subjects aged less than 80 years, where only the AA genotypes appeared to have a protective role against the onset of the sporadic LOAD. For the overall CAD sample the pattern was similar and significant differences were observed only in subjects non carrying the apolipoprotein E (APOE) e*4 allele, where the A allele carrying genotypes had a protective role against the onset of the disease.


2021 ◽  
pp. 1-21
Author(s):  
Masoud Neshan ◽  
Seyed Kazem Malakouti ◽  
Leila Kamalzadeh ◽  
Mina Makvand ◽  
Arezoo Campbell ◽  
...  

Background: Late-onset Alzheimer’s disease (LOAD) is associated with many environmental and genetic factors. The effect of systemic inflammation on the pathogenesis of neurodegenerative diseases such as AD has been strongly suggested. T helper cells (Th) are one of the important components of the immune system and can easily infiltrate the brain in pathological conditions. The development of each Th-subset depends on the production of unique cytokines and their main regulator. Objective: This study aimed to compare the mRNA levels of Th-related genes derived from peripheral blood mononuclear cells of LOAD patients with control. Also, the identification of the most important Th1/Th2 genes and downstream pathways that may be involved in the pathogenesis of AD was followed by computational approaches. Methods: This study invloved 30 patients with LOAD and 30 non-demented controls. The relative expression of T-cell cytokines (IFN-γ, TNF-α, IL-4, and IL-5) and transcription factors (T-bet and GATA-3) were assessed using real-time PCR. Additionally, protein-protein interaction (PPI) was investigated by gene network construction. Results: A significant decrease at T-bet, IFN-γ, TNF-α, and GATA-3 mRNA levels was detected in the LOAD group, compared to the controls. However, there was no significant difference in IL-4 or IL-5 mRNA levels. Network analysis revealed a list of the highly connected protein (hubs) related to mitogen-activated protein kinase (MAPK) signaling and Th17 cell differentiation pathways. Conclusion: The findings point to a molecular dysregulation in Th-related genes, which can promising in the early diagnosis or targeted interventions of AD. Furthermore, the PPI analysis showed that upstream off-target stimulation may involve MAPK cascade activation and Th17 axis induction.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Corona Solana ◽  
Raquel Tarazona ◽  
Rafael Solana

Alzheimer’s disease (AD) represents the most common cause of dementia in the elderly. AD is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although the aetiology of AD is not clear, both environmental factors and heritable predisposition may contribute to disease occurrence. In addition, inflammation and immune system alterations have been linked to AD. The prevailing hypothesis as cause of AD is the deposition in the brain of amyloid beta peptides (Aβ). Although Aβ have a role in defending the brain against infections, their accumulation promotes an inflammatory response mediated by microglia and astrocytes. The production of proinflammatory cytokines and other inflammatory mediators such as prostaglandins and complement factors favours the recruitment of peripheral immune cells further promoting neuroinflammation. Age-related inflammation and chronic infection with herpes virus such as cytomegalovirus may also contribute to inflammation in AD patients. Natural killer (NK) cells are innate lymphoid cells involved in host defence against viral infections and tumours. Once activated NK cells secrete cytokines such as IFN-γ and TNF-α and chemokines and exert cytotoxic activity against target cells. In the elderly, changes in NK cell compartment have been described which may contribute to the lower capacity of elderly individuals to respond to pathogens and tumours. Recently, the role of NK cells in the immunopathogenesis of AD is discussed. Although in AD patients the frequency of NK cells is not affected, a high NK cell response to cytokines has been described together with NK cell dysregulation of signalling pathways which is in part involved in this altered behaviour.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1647
Author(s):  
Anna Bocharova ◽  
Kseniya Vagaitseva ◽  
Andrey Marusin ◽  
Natalia Zhukova ◽  
Irina Zhukova ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disorder, and represents the most common cause of dementia. In this study, we performed several different analyses to detect loci involved in development of the late onset AD in the Russian population. DNA samples from 472 unrelated subjects were genotyped for 63 SNPs using iPLEX Assay and real-time PCR. We identified five genetic loci that were significantly associated with LOAD risk for the Russian population (TOMM40 rs2075650, APOE rs429358 and rs769449, NECTIN rs6857, APOE ε4). The results of the analysis based on comparison of the haplotype frequencies showed two risk haplotypes and one protective haplotype. The GMDR analysis demonstrated three significant models as a result: a one-factor, a two-factor and a three-factor model. A protein–protein interaction network with three subnetworks was formed for the 24 proteins. Eight proteins with a large number of interactions are identified: APOE, SORL1, APOC1, CD33, CLU, TOMM40, CNTNAP2 and CACNA1C. The present study confirms the importance of the APOE-TOMM40 locus as the main risk locus of development and progress of LOAD in the Russian population. Association analysis and bioinformatics approaches detected interactions both at the association level of single SNPs and at the level of genes and proteins.


Sign in / Sign up

Export Citation Format

Share Document