scholarly journals Phytochemicals: Potential Lead Compounds for COVID-19 Therapeutics

2021 ◽  
Vol 15 ◽  
Author(s):  
Srishti Kashyap ◽  
Revathy Nadhan ◽  
Danny N. Dhanasekaran

Coronavirus Disease 2019 (COVID-19) is a global pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2). The rising number of cases of this highly transmissible infection has pressed for the urgent need to find effective therapeutics. The life cycle of SARS-CoV-2 includes the viral entry, viral replication, viral assembly and release. The symptoms associated with viral infection often leads to fatal outcome with pneumonia, myocarditis, acute respiratory distress syndrome, hypercoagulability, and/or multi-organ failure. Recent studies have reported that phytochemicals such as emodin, epigallocatechin gallate, and berberine could, albeit modestly, inhibit different stages of SARS-CoV-2 life cycle. The phytochemicals have been shown to disrupt viral infection and replication by blocking viral-surface spike protein binding to entry receptor angiotensin-converting enzyme (ACE2), inhibiting viral membrane fusion with host cells, inhibiting RNA-dependent RNA polymerase involved in viral replication, and/or pathological host- responses in vitro. The focus of this review is to evaluate the efficacies of these phytochemicals on inhibiting SARS-CoV-2 viral infection, growth, or disease progression as well as to provide a perspective on the potential use of these phytochemicals in the development of novel therapeutics against SARS-CoV-2

2021 ◽  
Vol 22 ◽  
Author(s):  
Jyotika Rajawat ◽  
Abhishek Chandra

Poly (ADP-ribose) polymerase 1 (PARP1) is a post-translational modifying enzyme and is also known to act as transcription factor and co-activator. PARP1 has been shown to be involved with diseases resulting in increased inflammation and several viral diseases have also been associated with PARP1 activation. PARP1 facilitates influenza A virus entry in host cells by degrading interferon receptor type I. PARP1 regulates expression of NFkB and downstream cytokine production and its inhibition is known to attenuate the expression of inflammatory cytokines. Thus, PARP1 plays an important role in host-pathogen interactions and pathogenesis. Moreover, pre-clinical and in vitro studies have shown that PARP1 inhibition may affect viability of several viruses including affecting replication of the SARS-CoV virus, a distant relative of the SARS-CoV-2 virus, the one which caused the SARS epidemic of 2002. Covid-19 has been declared a global pandemic; with symptoms of the disease now not limited to respiratory distress alone. Severe inflammation is observed in the lungs leading to a surge of cytokine release systemically, affecting heart function, ischemia and stroke. Inflammatory cytokines which are associated with severe comorbidities and mortalities due to chronic diseases are being upregulated in an acute fashion. There is no immediate treatment, and only palliative care is being provided. The current review will discuss mechanisms of PARP1 activation during viral infection, inflammatory diseases, cytokine expression and possibility of PARP1 in regulating cytokine storm and hyper-inflammation seen with Covid-19.


2021 ◽  
Vol 49 (9) ◽  
pp. 030006052110443
Author(s):  
İrem İnanç ◽  
Esra Erdemli

Coronavirus disease 2019 (COVID-19) following infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic that is still having serious effects worldwide. This virus, which targets the lungs in particular, can also damage other tissues. Angiotensin converting enzyme 2 (ACE-2) plays a key role in viral entry into host cells. The presence of ACE-2 in various tissues may permit viral infection. Studies of COVID-19 often make use of postmortem tissues. Although this information provides various useful results, it is also necessary to conduct in vitro studies to understand optimal treatment approaches. Because the virus may show species-specific differences, in vitro technologies using human cells are particularly important. Organoid technologies, three-dimensional structures that can be obtained from human cells, are playing increasingly important roles in studies of SARS-CoV-2. This technology offers a significant advantage in terms of mimicking in vivo tissue structures and testing antiviral compounds. In this mini-review, we summarize studies of SARS-CoV-2 using both histopathological and organoid technology approaches.


2020 ◽  
Author(s):  
Laura Lafon-Hughes

BACKGROUND It is common knowledge that vaccination has improved our life quality and expectancy since it succeeded in achieving almost eradication of several diseases including chickenpox (varicella), diphtheria, hepatitis A and B, measles, meningococcal, mumps, pneumococcal, polio, rotavirus, rubella, tetanus and whooping cough (pertussis) Vaccination success is based on vaccine induction of neutralizing antibodies that help fight the infection (e.g. by a virus), preventing the disease. Conversely, Antibody-dependent enhancement (ADE) of a viral infection occurs when anti-viral antibodies facilitate viral entry into host cells and enhance viral infection in these cells. ADE has been previously studied in Dengue and HIV viruses and explains why a second infection with Dengue can be lethal. As already reviewed in Part I and Part II, SARS-Cov-2 shares with HIV not only 4 sequences in the Spike protein but also the capacity to attack the immune system. OBJECTIVE As HIV presents ADE, we wondered whether this was also the case regarding SARS-CoV-2. METHODS A literature review was done through Google. RESULTS SARS-CoV-2 presents ADE. As SARS, which does not have the 4 HIV-like inserts, has the same property, ADE would not be driven by the HIV-like spike sequences. CONCLUSIONS ADE can explain the failure of herd immunity-based strategies and will also probably hamper anti-SARS-CoV-2 vaccine development. As reviewed in Part I, there fortunately are promising therapeutic strategies for COVID-19, which should be further developed. In the meantime, complementary countermeasures to protect mainly the youth from this infection are presented to be discussed in Part V Viewpoint.


2006 ◽  
Vol 50 (6) ◽  
pp. 2231-2233 ◽  
Author(s):  
Xing-Quan Zhang ◽  
Meredith Sorensen ◽  
Michael Fung ◽  
Robert T. Schooley

ABSTRACT Recently, antiretroviral agents directed at several steps involved in viral entry have been shown to reduce viral replication in vitro and in vivo. We have demonstrated a high level of in vitro synergistic antiretroviral activity for two entry inhibitors that are directed at sequential steps in the entry process.


2021 ◽  
Vol 27 ◽  
Author(s):  
Daniela Martinez ◽  
Diego Amaral ◽  
David Markovitz ◽  
Luciano Pinto

Background: in december 2019, china announced the first case of an infection caused by an, until then, unknown virus: sars-cov-2. since then, researchers have been looking for viable alternatives for the treatment and/or cure of viral infection. among the possible complementary solutions are lectins, and proteins that are reversibly bound to different carbohydrates. the spike protein, present on the viral surface, can interact with different cell receptors: ace2, cd147, and dc-signr. since lectins have an affinity for different carbohydrates, the binding with the glycosylated cell receptors represents a possibility of preventing the virus from binding to the receptors of host cells. Objective: in this review we discuss the main lectins that are possible candidates for use in the treatment of covid-19, highlighting those that have already demonstrated antiviral activity in vivo and in vitro, including mannose-binding lectin, griffithsin, banlec, and others. we also aim to discuss the possible mechanism of action of lectins, which appears to occur through the mediation of viral fusion in host cells, by binding of lectins to glycosylated receptors found in human cells and/or binding of these proteins with the spike glycoprotein, present in virus surface.moreover, we also discuss the use of lectins in clinical practice. Conclusion: Even with the development of effective vaccines, new cases of viral infection with the same virus, or new outbreaks with different viruses can occur; so, the development of new treatments should not be discarded. moreover, the discussions made in this work are relevant regarding the anti-viral properties of lectins.


2015 ◽  
Vol 89 (16) ◽  
pp. 8119-8129 ◽  
Author(s):  
Eytan Herzig ◽  
Nickolay Voronin ◽  
Nataly Kucherenko ◽  
Amnon Hizi

ABSTRACTThe process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting thein vitrodata. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis.IMPORTANCEReverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting thein vitrodata. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.


2020 ◽  
Vol 8 (5) ◽  
pp. 715 ◽  
Author(s):  
Samantha Gunasekera ◽  
Alireza Zahedi ◽  
Mark O’Dea ◽  
Brendon King ◽  
Paul Monis ◽  
...  

Cryptosporidium is a major cause of severe diarrhea-related disease in children in developing countries, but currently no vaccine or effective treatment exists for those who are most at risk of serious illness. This is partly due to the lack of in vitro culturing methods that are able to support the entire Cryptosporidium life cycle, which has led to research in Cryptosporidium biology lagging behind other protozoan parasites. In vivo models such as gnotobiotic piglets are complex, and standard in vitro culturing methods in transformed cell lines, such as HCT-8 cells, have not been able to fully support fertilization occurring in vitro. Additionally, the Cryptosporidium life cycle has also been reported to occur in the absence of host cells. Recently developed bioengineered intestinal models, however, have shown more promising results and are able to reproduce a whole cycle of infectivity in one model system. This review evaluates the recent advances in Cryptosporidium culturing techniques and proposes future directions for research that may build upon these successes.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Pierrick Craveur ◽  
Anna T. Gres ◽  
Karen A. Kirby ◽  
Dandan Liu ◽  
John A. Hammond ◽  
...  

ABSTRACTHIV-1 capsid protein (CA) plays critical roles in both early and late stages of the viral replication cycle. Mutagenesis and structural experiments have revealed that capsid core stability significantly affects uncoating and initiation of reverse transcription in host cells. This has led to efforts in developing antivirals targeting CA and its assembly, although none of the currently identified compounds are used in the clinic for treatment of HIV infection. A specific interaction that is primarily present in pentameric interfaces in the HIV-1 capsid core was identified and is reported to be important for CA assembly. This is shown by multidisciplinary characterization of CA site-directed mutants using biochemical analysis of virus-like particle formation, transmission electron microscopy ofin vitroassembly, crystallographic studies, and molecular dynamic simulations. The data are consistent with a model where a hydrogen bond between CA residues E28 and K30′ from neighboring N-terminal domains (CANTDs) is important for CA pentamer interactions during core assembly. This pentamer-preferred interaction forms part of anN-terminaldomaininterface (NDI) pocket that is amenable to antiviral targeting.IMPORTANCEPrecise assembly and disassembly of the HIV-1 capsid core are key to the success of viral replication. The forces that govern capsid core formation and dissociation involve intricate interactions between pentamers and hexamers formed by HIV-1 CA. We identified one particular interaction between E28 of one CA and K30′ of the adjacent CA that appears more frequently in pentamers than in hexamers and that is important for capsid assembly. Targeting the corresponding site could lead to the development of antivirals which disrupt this interaction and affect capsid assembly.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Xianghe Meng ◽  
Darong Yang ◽  
Rong Yu ◽  
Haizhen Zhu

It has been reported that IFN-λs inhibit HCV replication in vitro. But the mechanisms of how IL-28A conducts antiviral activity and the functions of IL-28A-induced ISGs (IFN-stimulated genes) are not fully understood. In this study, we found that IL-28A has the antiviral effect on HCV life cycle including viral replication, assembly, and release. IL-28A and IFN-αsynergistically inhibit virus replication. EPSTI1 (epithelial-stromal interaction 1), one of IL-28A-induced ISGs, plays a vital role in IL-28A-mediated antiviral activity. Furthermore, forced expression of EPSTI1 effectively inhibits HCV replication in the absence of interferon treatment, and knockdown of EPSTI1 contributes to viral enhancement. EPSTI1 can activate PKR promoter and induce several PKR-dependent genes, including IFN-β, IFIT1, OAS1, and RNase L, which is responsible for EPSTI1-mediated antiviral activity.


2002 ◽  
Vol 76 (19) ◽  
pp. 9773-9786 ◽  
Author(s):  
Laura Doglio ◽  
Ario De Marco ◽  
Sibylle Schleich ◽  
Norbert Roos ◽  
Jacomine Krijnse Locker

ABSTRACT Vaccinia virus (VV), a member of the poxvirus family, is unique among most other DNA viruses in that both transcription and DNA replication occur in the cytoplasm of the host cell. It was recently shown by electron microscopy (EM) that soon after viral DNA synthesis is initiated in HeLa cells, the replication sites become enwrapped by the membrane of the endoplasmic reticulum (ER). In the same study, a novel VV membrane protein, the E8R gene product, that may play a role in the ER wrapping process was identified (N. Tolonen, L. Doglio, S. Schleich, and J. Krijnse Locker, Mol. Biol. Cell 12:2031-2046, 2001). In the present study, the gene product of E8R was characterized both biochemically and morphologically. We show that E8R is made predominantly early in infection but is packaged into the virion. On two-dimensional gel electrophoresis, the protein appeared as a single spot throughout the VV life cycle; however, in the assembled virion, the protein underwent several modifications which resulted in a change in its molecular weight and its isoelectric point. EM of labeled cryosections of infected HeLa cells showed that the protein localized to the ER and to membranes located on one side of the Golgi complex as early as 1 h postinfection. Late in infection, E8R was additionally associated with membranes of immature virions and with intracellular mature viruses. Although E8R is predominantly associated with membranes, we show that the protein is associated with viral cores; the protein is present in cores made with NP-40-dithiothreitol as well as in incoming cores, the result of the viral entry process, early in infection. Finally, we show that E8R can be phosphorylated in vitro by the viral kinase F10L. It is able to bind DNA in vitro, and this binding may be modulated by phosphorylation by F10L. A putative role of the E8R gene product throughout the VV life cycle is discussed.


Sign in / Sign up

Export Citation Format

Share Document