scholarly journals Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH

2011 ◽  
Vol 94 (12) ◽  
pp. 5842-5850 ◽  
Author(s):  
A. Ye ◽  
C. Streicher ◽  
H. Singh
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gabriella Boisen ◽  
Julia R. Davies ◽  
Jessica Neilands

Abstract Background In caries, low pH drives selection and enrichment of acidogenic and aciduric bacteria in oral biofilms, and development of acid tolerance in early colonizers is thought to play a key role in this shift. Since previous studies have focussed on planktonic cells, the effect of biofilm growth as well as the role of a salivary pellicle on this process is largely unknown. We explored acid tolerance and acid tolerance response (ATR) induction in biofilm cells of both clinical and laboratory strains of three oral streptococcal species (Streptococcus gordonii, Streptococcus oralis and Streptococcus mutans) as well as two oral species of Actinomyces (A. naeslundii and A. odontolyticus) and examined the role of salivary proteins in acid tolerance development. Methods Biofilms were formed on surfaces in Ibidi® mini flow cells with or without a coating of salivary proteins and acid tolerance assessed by exposing them to a challenge known to kill non-acid tolerant cells (pH 3.5 for 30 min) followed by staining with LIVE/DEAD BacLight and confocal scanning laser microscopy. The ability to induce an ATR was assessed by exposing the biofilms to an adaptation pH (pH 5.5) for 2 hours prior to the low pH challenge. Results Biofilm formation significantly increased acid tolerance in all the clinical streptococcal strains (P < 0.05) whereas the laboratory strains varied in their response. In biofilms, S. oralis was much more acid tolerant than S. gordonii or S. mutans. A. naeslundii showed a significant increase in acid tolerance in biofilms compared to planktonic cells (P < 0.001) which was not seen for A. odontolyticus. All strains except S. oralis induced an ATR after pre-exposure to pH 5.5 (P < 0.05). The presence of a salivary pellicle enhanced both acid tolerance development and ATR induction in S. gordonii biofilms (P < 0.05) but did not affect the other bacteria to the same extent. Conclusions These findings suggest that factors such as surface contact, the presence of a salivary pellicle and sensing of environmental pH can contribute to the development of high levels of acid tolerance amongst early colonizers in oral biofilms which may be important in the initiation of caries.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2099
Author(s):  
Lucía Abadía-García ◽  
Eduardo Castaño-Tostado ◽  
Anaberta Cardador-Martínez ◽  
Sandra Teresita Martín-del-Campo ◽  
Silvia L. Amaya-Llano

High Intensity Ultrasound (HIUS) can induce modification of the protein structure. The combination of enzymatic hydrolysis and ultrasound is an interesting strategy to improve the release of the Angiotensin-Converting Enzyme (ACE) inhibitory peptides. In this study, whey proteins were pretreated with HIUS at two levels of amplitude (30 and 50%) for 10 min, followed by hydrolysis using the vegetable protease bromelain. The hydrolysates obtained were ultrafiltrated and their fractions were submitted to a simulated gastrointestinal digestion. The conformational changes induced by HIUS on whey proteins were analyzed using Fourier-transform infrared spectroscopy by attenuated total reflectance (FTIR-ATR) and intrinsic spectroscopy. It was found that both levels of ultrasound pretreatment significantly decreased the IC50 value (50% Inhibitory Concentration) of the hydrolysates in comparison with the control (α = 0.05). After this treatment, HIUS-treated fractions were shown as smaller in size and fractions between 1 and 3 kDa displayed the highest ACE inhibition activity. HIUS promoted significant changes in whey protein structure, inducing, unfolding, and aggregation, decreasing the content of α-helix, and increasing β-sheets structures. These findings prove that ultrasound treatment before enzymatic hydrolysis is an innovative and useful strategy that modifies the peptide profile of whey protein hydrolysates and enhances the production of ACE inhibitory peptides.


2003 ◽  
Vol 83 (5) ◽  
pp. 353-364 ◽  
Author(s):  
Florence Caussin ◽  
Marie-H�l�ne Famelart ◽  
Jean-Louis Maubois ◽  
Sa�d Bouhallab

1993 ◽  
Vol 41 (11) ◽  
pp. 1826-1829 ◽  
Author(s):  
Frank J. Monahan ◽  
D. Julian. McClements ◽  
John E. Kinsella
Keyword(s):  

Author(s):  
L. Bahdanava ◽  
A. Podryabinkina ◽  
I. Bahdanau ◽  
T. Savelyeva

The article presents the results of research to study seasonal changes in the content of total protein, casein and whey proteins in raw milk and to analyze their impact on cheese yield. It was determined that the lowest casein content in raw milk (18% lower than the national average) was observed in October and March. The linear dependence of the cheese yield on both the total protein content and casein content was established.


2016 ◽  
Vol 61 ◽  
pp. 487-495 ◽  
Author(s):  
Marie Chevallier ◽  
Alain Riaublanc ◽  
Christelle Lopez ◽  
Pascaline Hamon ◽  
Florence Rousseau ◽  
...  

2017 ◽  
Vol 100 (2) ◽  
pp. 510-521 ◽  
Author(s):  
Ping Feng ◽  
Christophe Fuerer ◽  
Adrienne McMahon

Abstract Protein separation by sodium dodecyl sulfate-capillary gel electrophoresis, followed by UV absorption at 220 nm, allows for the quantification of major proteins in raw milk. In processed dairy samples such as skim milk powder (SMP) and infant formulas, signals from individual proteins are less resolved, but caseins still migrate as one family between two groups of whey proteins. In the first group, α-lactalbumin and β-lactoglobulin migrate as two distinct peaks. Lactosylated adducts show delayed migration times and interfere with peak separation, but both native and modified forms as well as other low-MW whey proteins still elute before the caseins. The second group contains high-MW whey proteins (including bovine serum albumin, lactoferrin, and immunoglobulins) and elutes after the caseins. Caseins and whey proteins can thus be considered two distinct nonoverlapping families whose ratio can be established based on integrated areas without the need for a calibration curve. Because mass-to-area response factors for whey proteins and caseins are different, an area correction factor was determined from experimental measurement using SMP. Method performance assessed on five infant formulas showed RSDs of 0.2–1.2% (within day) and 0.5–1.1% (multiple days), with average recoveries between 97.4 and 106.4% of added whey protein. Forty-three different infant formulas and milk powders were analyzed. Of the 41 samples with manufacturer claims, the measured whey protein content was in close agreement with declared values, falling within 5% of the declared value in 76% of samples and within 10% in 95% of samples.


2001 ◽  
Vol 68 (3) ◽  
pp. 471-481 ◽  
Author(s):  
CATHERINE SCHORSCH ◽  
DEBORAH K. WILKINS ◽  
MALCOLM G. JONES ◽  
IAN T. NORTON

The aim of the present work was to investigate the role of whey protein denaturation on the acid induced gelation of casein. This was studied by determining the effect of whey protein denaturation both in the presence and absence of casein micelles. The study showed that milk gelation kinetics and gel properties are greatly influenced by the heat treatment sequence. When the whey proteins are denatured separately and subsequently added to casein micelles, acid-induced gelation occurs more rapidly and leads to gels with a more particulated microstructure than gels made from co-heated systems. The gels resulting from heat-treatment of a mixture of pre-denatured whey protein with casein micelles are heterogeneous in nature due to particulates formed from casein micelles which are complexed with denatured whey proteins and also from separate whey protein aggregates. Whey proteins thus offer an opportunity not only to control casein gelation but also to control the level of syneresis, which can occur.


2011 ◽  
Vol 105 (10) ◽  
pp. 1512-1519 ◽  
Author(s):  
Sebely Pal ◽  
Vanessa Ellis

Previous evidence indicates that chronic consumption of dairy whey proteins has beneficial effects on CVD risk factors. The present study investigated the postprandial effects of whey protein isolate on blood pressure, vascular function and inflammatory markers in overweight and obese postmenopausal women. This was a randomised, three-way cross-over design study where twenty overweight and obese postmenopausal women consumed a breakfast meal in conjunction with one of three supplements: 45 g whey protein isolate, 45 g sodium caseinate or 45 g of a glucose control. Fasting and postprandial blood samples, blood pressure and pulse wave analysis readings were taken for up to 6 h. After consumption of the meal, both systolic and diastolic blood pressure, and augmentation index (AI) decreased initially for all interventions and gradually returned to baseline levels by 6 h. However, there were no significant differences in AI, systolic or diastolic blood pressure within or between the glucose control, casein or whey groups. There were also no significant group effects on plasma inflammatory markers (IL-6, TNF-α and C-reactive protein). The health effects previously seen with chronic whey protein ingestion were not seen in the acute 6 h postprandial period in relation to blood pressure, vascular function or inflammatory markers when compared with casein and a glucose control. This suggests that such effects are better observed from the long-term consumption of whey proteins.


Sign in / Sign up

Export Citation Format

Share Document