scholarly journals [Paper] A 20Mfps Global Shutter CMOS Image Sensor with Improved Light Sensitivity and Power Consumption Performances

2016 ◽  
Vol 4 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Rihito Kuroda ◽  
Yasuhisa Tochigi ◽  
Ken Miyauchi ◽  
Tohru Takeda ◽  
Hidetake Sugo ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3649
Author(s):  
Minhyun Jin ◽  
Hyeonseob Noh ◽  
Minkyu Song ◽  
Soo Youn Kim

In this paper, we propose a complementary metal-oxide-semiconductor (CMOS) image sensor (CIS) that has built-in mask circuits to selectively capture either edge-detection images or normal 8-bit images for low-power computer vision applications. To detect the edges of images in the CIS, neighboring column data are compared in in-column memories after column-parallel analog-to-digital conversion with the proposed mask. The proposed built-in mask circuits are implemented in the CIS without a complex image signal processer to obtain edge images with high speed and low power consumption. According to the measurement results, edge images were successfully obtained with a maximum frame rate of 60 fps. A prototype sensor with 1920 × 1440 resolution was fabricated with a 90-nm 1-poly 5-metal CIS process. The area of the 4-shared 4T-active pixel sensor was 1.4 × 1.4 µm2, and the chip size was 5.15 × 5.15 mm2. The total power consumption was 9.4 mW at 60 fps with supply voltages of 3.3 V (analog), 2.8 V (pixel), and 1.2 V (digital).


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fang Tang ◽  
Amine Bermak ◽  
Amira Abbes ◽  
Mohieddine Amor Benammar

This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 486
Author(s):  
Ken Miyauchi ◽  
Kazuya Mori ◽  
Toshinori Otaka ◽  
Toshiyuki Isozaki ◽  
Naoto Yasuda ◽  
...  

A backside-illuminated complementary metal-oxide-semiconductor (CMOS) image sensor with 4.0 μm voltage domain global shutter (GS) pixels has been fabricated in a 45 nm/65 nm stacked CMOS process as a proof-of-concept vehicle. The pixel components for the photon-to-voltage conversion are formed on the top substrate (the first layer). Each voltage signal from the first layer pixel is stored in the sample-and-hold capacitors on the bottom substrate (the second layer) via micro-bump interconnection to achieve a voltage domain GS function. The two sets of voltage domain storage capacitor per pixel enable a multiple gain readout to realize single exposure high dynamic range (SEHDR) in the GS operation. As a result, an 80dB SEHDR GS operation without rolling shutter distortions and motion artifacts has been achieved. Additionally, less than −140dB parasitic light sensitivity, small noise floor, high sensitivity and good angular response have been achieved.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Fang Tang ◽  
Amine Bermak ◽  
Abbes Amira ◽  
Mohieddine Amor Benammar ◽  
Debiao He ◽  
...  

Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μm CMOS technology. The chip area of the proposed ADC is 7 μm × 500 μm. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k μm2·cycles/sample.


Sensors ◽  
2016 ◽  
Vol 16 (7) ◽  
pp. 999 ◽  
Author(s):  
Fan Zhang ◽  
Hanben Niu

Author(s):  
T. Yamaguchi ◽  
Y. Sunaga ◽  
M. Haruta ◽  
H. Takehara ◽  
T. Noda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document