scholarly journals Direct navigated 3D ultrasound for resection of brain tumors: a useful tool for intraoperative image guidance

2016 ◽  
Vol 40 (3) ◽  
pp. E5 ◽  
Author(s):  
Aliasgar V. Moiyadi ◽  
Prakash Shetty

OBJECTIVE Navigated 3D ultrasound is a novel intraoperative imaging adjunct permitting quick real-time updates to facilitate tumor resection. Image quality continues to improve and is currently sufficient to allow use of navigated ultrasound (NUS) as a stand-alone modality for intraoperative guidance without the need for preoperative MRI. METHODS The authors retrospectively analyzed cases involving operations performed at their institution in which a 3D ultrasound navigation system was used for control of resection of brain tumors in a “direct” 3D ultrasound mode, without preoperative MRI guidance. The usefulness of the ultrasound and its correlation with postoperative imaging were evaluated. RESULTS Ultrasound was used for resection control in 81 cases. In 53 of these 81 cases, at least 1 intermediate scan (range 1–3 intermediate scans) was obtained during the course of the resection, and in 50 of these 53 cases, the result prompted further resection. In the remaining 28 cases, intermediate scans were not performed either because the first ultrasound scan performed after resection was interpreted as showing no residual tumor (n = 18) and resection was terminated or because the surgeon intentionally terminated the resection prematurely due to the infiltrative nature of the tumor and extension of disease into eloquent areas (n = 10) and the final ultrasound scan was interpreted as showing residual disease. In an additional 20 cases, ultrasound navigation was used primarily for localization and not for resection control, making the total number of NUS cases where radical resection was planned 101. Gross-total resection (GTR) was planned in 68 of these 101 cases and cytoreduction in 33. Ultrasound-defined GTR was achieved in 51 (75%) of the cases in which GTR was planned. In the remaining 17, further resection had to be terminated (despite evidence of residual tumor on ultrasound) because of diffuse infiltration or proximity to eloquent areas. Of the 33 cases planned for cytoreduction, NUS guidance facilitated ultrasound-defined GTR in 4 cases. Overall, ultrasound-defined GTR was achieved in 50% of cases (55 of 111). Based on the postoperative imaging (MRI in most cases), GTR was achieved in 58 cases (53%). Final (postresection) ultrasonography was documented in 78 cases. The findings were compared with the postoperative imaging to ascertain concordance in detecting residual tumor. Overall concordance was seen in 64 cases (82.5%), positive concordance was seen in 33 (42.5%), and negative in 31 (40%). Discordance was seen in 14 cases—with ultrasound yielding false-positive results in 7 cases and false-negative results in 7 cases. Postoperative neurological worsening occurred in 15 cases (13.5%), and in most of these cases, it was reversible by the time of discharge. CONCLUSIONS The results of this study demonstrate that 3D ultrasound can be effectively used as a stand-alone navigation modality during the resection of brain tumors. The ability to provide repeated, high-quality intraoperative updates is useful for guiding resection. Attention to image acquisition technique and experience can significantly increase the quality of images, thereby improving the overall utility of this modality.

2017 ◽  
Vol 127 (4) ◽  
pp. 790-797 ◽  
Author(s):  
Kazuya Motomura ◽  
Atsushi Natsume ◽  
Kentaro Iijima ◽  
Shunichiro Kuramitsu ◽  
Masazumi Fujii ◽  
...  

OBJECTIVEMaximum extent of resection (EOR) for lower-grade and high-grade gliomas can increase survival rates of patients. However, these infiltrative gliomas are often observed near or within eloquent regions of the brain. Awake surgery is of known benefit for the treatment of gliomas associated with eloquent regions in that brain function can be preserved. On the other hand, intraoperative MRI (iMRI) has been successfully used to maximize the resection of tumors, which can detect small amounts of residual tumors. Therefore, the authors assessed the value of combining awake craniotomy and iMRI for the resection of brain tumors in eloquent areas of the brain.METHODSThe authors retrospectively reviewed the records of 33 consecutive patients with glial tumors in the eloquent brain areas who underwent awake surgery using iMRI. Volumetric analysis of MRI studies was performed. The pre-, intra-, and postoperative tumor volumes were measured in all cases using MRI studies obtained before, during, and after tumor resection.RESULTSIntraoperative MRI was performed to check for the presence of residual tumor during awake surgery in a total of 25 patients. Initial iMRI confirmed no further tumor resection in 9 patients (36%) because all observable tumors had already been removed. In contrast, intraoperative confirmation of residual tumor during awake surgery led to further tumor resection in 16 cases (64%) and eventually an EOR of more than 90% in 8 of 16 cases (50%). Furthermore, EOR benefiting from iMRI by more than 15% was found in 7 of 16 cases (43.8%). Interestingly, the increase in EOR as a result of iMRI for tumors associated mainly with the insular lobe was significantly greater, at 15.1%, than it was for the other tumors, which was 8.0% (p = 0.001).CONCLUSIONSThis study revealed that combining awake surgery with iMRI was associated with a favorable surgical outcome for intrinsic brain tumors associated with eloquent areas. In particular, these benefits were noted for patients with tumors with complex anatomy, such as those associated with the insular lobe.


2021 ◽  
Vol 50 (1) ◽  
pp. E14
Author(s):  
Prakash Shetty ◽  
Ujwal Yeole ◽  
Vikas Singh ◽  
Aliasgar Moiyadi

OBJECTIVEIntraoperative imaging is increasingly being used for resection control in diffuse gliomas, in which the extent of resection (EOR) is important. Intraoperative ultrasound (iUS) has emerged as a highly effective tool in this context. Navigated ultrasound (NUS) combines the benefits of real-time imaging with the benefits of navigation guidance. In this study, the authors investigated the use of NUS as an intraoperative adjunct for resection control in gliomas.METHODSThe authors retrospectively analyzed 210 glioma patients who underwent surgery using NUS at their center. The analysis included intraoperative decision-making, diagnostic accuracy, and operative outcomes, particularly EOR and related factors influencing this.RESULTSUS-defined gross-total resection (GTR) was achieved in 57.6% of patients. Intermediate resection control scans were evaluable in 115 instances. These prompted a change in the operative decision in 42.5% of cases (the majority being further resection of unanticipated residual tumor). Eventual MRI-defined GTR rates were similar (58.6%), although the concordance between US and MRI was 81% (170/210 cases). There were 21 false positives and 19 false negatives with NUS, resulting in a sensitivity of 78%, specificity of 83%, positive predictive value of 77%, and negative predictive value of 84%. A large proportion of patients (13/19 patients, 68%) with false-negative results eventually had near-total resections. Tumor resectability, delineation, enhancement pattern, eloquent location, and US image resolution significantly influenced the GTR rate, though only resectability and eloquent location were significant on multivariate analysis.CONCLUSIONSNUS is a useful intraoperative adjunct for resection control in gliomas, detecting unanticipated tumor residues and positively influencing the course of the resection, eventually leading to higher resection rates. Nevertheless, resection is determined by the innate resectability of the tumor and its relationship to eloquent location, reinforcing the need to combine iUS with functional mapping techniques to optimize resections.


2005 ◽  
Vol 23 (30) ◽  
pp. 7621-7631 ◽  
Author(s):  
J. Russell Geyer ◽  
Richard Sposto ◽  
Mark Jennings ◽  
James M. Boyett ◽  
Richard A. Axtell ◽  
...  

Purpose To evaluate response rate, event-free survival (EFS), and toxicity of two chemotherapeutic regimens for treatment of children younger than 36 months with malignant brain tumors and to estimate control intervals without irradiation in children with no residual tumor after initial surgery and induction chemotherapy and with delayed irradiation in patients with residual tumor or metastatic disease at diagnosis. Patients and Methods Patients were randomly assigned to one of two regimens of induction chemotherapy (vincristine, cisplatin, cyclophosphamide, and etoposide v vincristine, carboplatin, ifosfamide, and etoposide). Maintenance chemotherapy began after induction in children without progressive disease. Children with no residual tumors after induction therapy and no metastatic disease at diagnosis were not to receive radiation therapy unless their tumors progressed. Results Two hundred ninety-nine infants were enrolled. Forty-two percent of patients responded to induction chemotherapy. At 5 years from study entry, the EFS rate was 27% ± 3%, and the survival rate was 43% ± 3%. There was no significant difference between the two arms in terms of response rate or EFS. For medulloblastoma, supratentorial primitive neuroectodermal tumor, ependymoma, and rhabdoid tumors, 5-year EFS rates were 32% ± 5%, 17% ± 6%, and 32% ± 6%, and 14% ± 7%, respectively. Fifty-eight percent of patients who were alive 5 years after study entry had not received radiation therapy. Conclusion Intensified induction chemotherapy resulted in a high response rate of malignant brain tumors in infants. Survival was comparable to that of previous studies, and most patients who survived did not receive radiation therapy.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi224-vi224
Author(s):  
Alexis Morell ◽  
Daniel Eichberg ◽  
Ashish Shah ◽  
Evan Luther ◽  
Victor Lu ◽  
...  

Abstract BACKGROUND Developing mapping tools that allow identification of traditional or non-traditional eloquent areas is necessary to minimize the risk of postoperative neurologic deficits. The objective of our study is to evaluate the use of a novel cloud-based platform that uses machine learning to identify cerebral networks in patients with brain tumors. METHODS We retrospectively included all adult patients who underwent surgery for brain tumor resection or thermal ablation at our Institution between the 16th of February and the 15th of May of 2021. Pre and postoperative contrast-enhanced MRI with T1-weighted and high-resolution Diffusion Tensor Imaging (DTI) sequences were uploaded into the Quicktome platform. After processing the data, we categorized the integrity of seven large-scale brain networks: sensorimotor, visual, ventral attention, central executive, default mode, dorsal attention and limbic. Affected networks were correlated with pre and postoperative clinical data, including neurologic deficits. RESULTS Thirty-five (35) patients were included in the study. The average age of the sample was 63.2 years, and 51.4% (n=18) were females. The most affected network was the central executive network (40%), followed by the dorsal attention and default mode networks (31.4%), while the least affected were the visual (11%) and ventral attention networks (17%). Patients with preoperative deficits showed a significantly higher number of altered networks before the surgery (p=0.021), compared to patients without deficits. In addition, we found that patients without neurologic deficits had an average of 2.06 large-scale networks affected, with 75% of them not being related to traditional eloquent areas as the sensorimotor, language or visual circuits. CONCLUSIONS The Quicktome platform is a practical tool that allows automatic visualization of large-scale brain networks in patients with brain tumors. Although further studies are needed, it may assist in the surgical management of traditional and non-traditional eloquent areas.


2016 ◽  
Vol 125 (4) ◽  
pp. 1016-1023 ◽  
Author(s):  
Andrej Šteňo ◽  
Michaela Jezberová ◽  
Vladimír Hollý ◽  
Gabriela Timárová ◽  
Juraj Šteňo

OBJECTIVE Resection of insular gliomas is challenging. In cases of intraoperative injury to the lenticulostriate arteries (LSAs), the usual result is a dense hemiplegia. LSAs are usually localized just behind the medial tumor border but they can also be encased by the tumor. Thus, exact localization of these perforators is important. However, intraoperative localization of LSAs using conventional neuronavigation can be difficult due to brain shift. In this paper, the authors present a novel method of intraoperative LSA visualization by navigated 3D ultrasound (3DUS) power Doppler. This technique enables almost real-time imaging of LSAs and evaluation of their shift during insular tumor resections. METHODS Six patients harboring insular Grade II gliomas were consecutively operated on at the Department of Neurosurgery in Bratislava using visualization of LSAs by navigated 3DUS power Doppler. In all cases, the 3DUS data were repeatedly updated to compensate for the brain shift and display the actual position of LSAs and residual tumor. RESULTS Successful visualization of LSAs was achieved in all cases. During all surgeries, the distance between the bottom of the resection cavity and LSAs could be accurately evaluated; in all tumors the resection approached the LSAs and only a minimal amount of tissue covering these perforators was intentionally left in place to avoid injury to them. CONCLUSIONS Visualization of LSAs by navigated 3DUS power Doppler is a useful tool that may help to prevent injury of LSAs during removal of insular low-grade gliomas. However, reliability of this method has to be carefully evaluated in further studies.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi228-vi229
Author(s):  
Aliasgar Moiyadi ◽  
Prakash Shetty ◽  
Vikas Singh

Abstract INTRODUCTION Intraoperative ultrasound (iUS) is a promising tool for glioma surgery. Navigated 3-D (n3D) iUS has many benefits over standard 2-D iUS. METHODS This was a retrospective comparative cohort study using propensity score matching (PSM). 500 consecutive histologically confirmed gliomas were divided into 2 cohorts – 2DiUS - Cohort A; and n3DiUS -Cohort B. PSM was used to account for known confounders (250 in each group; 1:1 matching). Gross total resection rates (based on iUS findings as well as postoperative MR) and perioperative morbidity were analyzed across the groups as were factors influencing these outcomes (using univariate as well as multivariate regression models). RESULTS Overall, the majority of the patients were adults (94%), males (71%) with hemispheric tumors (96%). 35% had tumors close to eloquent regions and 23% had received some prior treatment. The majority were high-grade gliomas (85%). 2D iUS was employed mainly for localization (80%) whereas n3D was used predominantly for resection control (84%) [p < 0.001]. GTR rate was higher in the n3D cohort (55.2% vs 38.4% in 2D; p = 0.001). The odds of having a complete resection in the n3D cohort was twice that of the 2D. Prior treatment, hemispheric location, and use of fluorescence were also significantly associated with higher GTR rates on univariate analysis. On multivariate analysis, all of these remained significant. There was no difference in the morbidity rates in the two cohorts. N3D iUS had a higher specificity and positive likelihood ratio in detecting tumor residue. CONCLUSION For hemispheric gliomas undergoing resective surgery, the use of navigated 3D ultrasound improves GTR rates, with no added morbidity. It is more likely to be used for resection control mode than is 2DUS and this is probably because n3DUS is more specific and likely to pick up tumor residues contributing to its better accuracy.


Author(s):  
Henry Colle ◽  
David Colle ◽  
Bonny Noens ◽  
Bob Dhaen ◽  
Giovanni Alessi ◽  
...  

Background During resection of intrinsic brain tumors in eloquent areas, particularly under awake mapping, subcortical stimulation is mandatory to avoid irreversible deficits by damaging white fiber tracts. The current practice is to alternate between subcortical stimulation with an appropriate probe and resection of tumoral tissue with an ultrasound aspiration device. Switching between different devices induces supplementary movement and possible tissue trauma, loss of time, and inaccuracies in the localization of the involved area. Objective To use one device for both stimulation as well as a resecting tool. Methods The tip of different ultrasound aspiration devices is currently used for monopolar current transmission (e.g., for vessel coagulation in liver surgery). We use the same circuitry for monopolar subcortical stimulation when connected with the usual stimulator devices. Results We have applied this method since 2004 in over 500 patients during tumor resection with cortical and subcortical stimulation, mostly with awake language and motor monitoring. Conclusion A method is presented using existing stimulation and wiring devices by which simultaneous subcortical stimulation and ultrasonic aspiration are applied with the same tool. The accuracy, safety, and speed of intrinsic intracranial lesion resection can be improved when subcortical stimulation is applied.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 447
Author(s):  
Asaf Olshinka ◽  
Dean Ad-El ◽  
Elena Didkovski ◽  
Shirel Weiss ◽  
Rinat Ankri ◽  
...  

Diffusion reflectance spectroscopy measurements targeted with gold nanoparticles (GNPs) can identify residual cutaneous squamous cell carcinoma (SCC) in excision borders. Human SCC specimens were stained with hematoxylin and eosin to identify tumor borders, and reflected onto an unstained deparaffinized section. Diffusion reflection of three sites (normal and SCC) were measured before and after GNPs targeting. Hyperspectral imaging showed a mean of 2.5 sites with tumor per specimen and 1.2 tumor-free (p < 0.05, t-test). GNPs were detected in 25/30 tumor sites (sensitivity 83.3%, false-negative rate 16.6%) and 12/30 non-tumor sites (specificity 60%, false-positive rate 40%). This study verifies the use of nanotechnology in identifying SCC tumor margins. Diffusion reflection scanning has high sensitivity for detecting the residual tumor.


1999 ◽  
Vol 11 (3) ◽  
pp. 152 ◽  
Author(s):  
Randa Zakhary ◽  
G. Evren Keles ◽  
Mitchel S. Berger

Sign in / Sign up

Export Citation Format

Share Document