Increasing the biodegradability of rocket fuel polluted groundwater by means of chemical oxidation processes

2006 ◽  
Vol 55 (4) ◽  
pp. 190
Author(s):  
J Kallas ◽  
J Reinik
2020 ◽  
Vol 18 (1) ◽  
pp. 1148-1166
Author(s):  
Ganjar Fadillah ◽  
Septian Perwira Yudha ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Oki Muraza

AbstractPhysical and chemical methods have been developed for water and wastewater treatments. Adsorption is an attractive method due to its simplicity and low cost, and it has been widely employed in industrial treatment. In advanced schemes, chemical oxidation and photocatalytic oxidation have been recognized as effective methods for wastewater-containing organic compounds. The use of magnetic iron oxide in these methods has received much attention. Magnetic iron oxide nanocomposite adsorbents have been recognized as favorable materials due to their stability, high adsorption capacities, and recoverability, compared to conventional sorbents. Magnetic iron oxide nanocomposites have also been reported to be effective in photocatalytic and chemical oxidation processes. The current review has presented recent developments in techniques using magnetic iron oxide nanocomposites for water treatment applications. The review highlights the synthesis method and compares modifications for adsorbent, photocatalytic oxidation, and chemical oxidation processes. Future prospects for the use of nanocomposites have been presented.


RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4237-4246
Author(s):  
Tian Xie ◽  
Zhi Dang ◽  
Jian Zhang ◽  
Qian Zhang ◽  
Rong-Hai Zhang ◽  
...  

The combination of pump-and-treat and in situ chemical oxidation processes can effectively accelerate the remediation of DNAPL pollutant in groundwater.


2017 ◽  
pp. 147
Author(s):  
Naser Jamshidi ◽  
Farzad Nezhad Bahadori ◽  
Ladan Talebiazar ◽  
Ali Akbar Azimi

Today, advanced oxidation processes (AOPs) is considered as a key and effective method for environment preservation from pollutions. In this study , advanced photochemical oxidation processes using O3/H2O2 and O3/H2O2/UV systems were investigated batch photolytic reactor in lab-scale for the degradation of bisphenol A (BPA). In ozone generator source, air, as of the initial instrument feed, changes to ozone after electrical action and reaction. The UV irradiation source was a medium-pressure mercury lamp 300 W that was immerse in the wastewater solution with in 1.5 liter volume reactor. The reaction was influenced by the pH, the input concentration of H2O2, the input concentration of BPA, ozone dosage, chemical oxidation demand (COD) and UV irradiation time. Results showed that at initial bisphenol A concentration of 100 mg/l will completely degrade after 60 minutes by using O3/H2O2 in the pH range from 9.8 to 10 and by adding UV, it will happen in less than 36 minutes in the pH range of 3 to 10. The O3/H2O2/UV process reduced COD to 75 percents.


Author(s):  
Chiu-Wen Chen ◽  
Nguyen Thanh Binh ◽  
Chang-Mao Hung ◽  
Chih-Feng Chen ◽  
Cheng-Di Dong

AbstractThe presence of polycyclic aromatic hydrocarbons (PAHs) in sediments is a major concern of risks associated with the aquatic ecosystems through bioaccumulation in food chains. To minimize the ecological risks due to contaminated sediments, processes that can degrade the sorbed PAHs are urgently needed. The present study aims at assessing the treatment efficiency of several chemical oxidation processes using potassium permanganate (KMnO


2001 ◽  
Vol 44 (9) ◽  
pp. 173-180 ◽  
Author(s):  
J. Dewulf ◽  
H. Van Langenhove ◽  
E. De Smedt ◽  
S. Geuens

Treatment of chlorinated organic compounds in waste gases is difficult because of several reasons: these compounds are dioxin precursors when incinerated, and also biological treatment is difficult because of a limited number of suitable microbial degradation pathways. On the other hand, since the 1990s, a new generation of chemical oxidation techniques has been introduced in water treatment. Advanced Oxidation Processes (AOPs) are based on a combination of UV/H2O2, UV/O3 or H2O2/O3. The combinations result in the generation of OH-radicals, which subsequently attack the organic pollutants. In this work, the treatment of a gas stream (240 L/h) loaded with 20-40 ppmv trichloroethylene (TCE) is presented. Therefore, a combination of an absorption process in a bubble column with a liquid H2O2/O3 initiated oxidation, was investigated. Removal efficiencies, depending on the dosed H2O2 and O3, up to 94% were found. The production of chloride ions was investigated: the Cl-atoms from the removed TCE could be found back as chloride ions. Next to the experimental work, attention was paid to the mechanisms taking place in the proposed concept. Here, a simulation model was developed, considering gas/liquid mass transfer of TCE and ozone, axial liquid dispersion, advective gas and liquid transport and about 29 chemical reaction steps. The modelling allowed a better understanding of the technique and gives insight in its possibilities and limitations. Finally, it can be concluded that the proposed technique shows interesting perspectives: it is able to transform chlorine in chlorinated solvents into chloride ions effectively at ambient temperature conditions.


2018 ◽  
Vol 1 (2) ◽  
pp. 24-33
Author(s):  
Dr. Waleed M. Sh. Alabdraba ◽  
Alaa R Al-Obaidi ◽  
Saja S Hashim ◽  
Sara D Zangana.

The selection of an effective water treatment technology is the important issues that relatively dealing with water pollution problems, some pollutants need more than the conventional facilities to be treated and discharged within the national standards. This study highlights some of the advanced treatment methods related to chemical oxidation, which is used in the treatment of some types of pollutants such as heavy metals, pesticides, dyes, etc. and demonstrate their effectiveness in treatment by reviewing what has been concluded in a number of studies in this range. © 2018 JASET, International Scholars and Researchers Association  


Sign in / Sign up

Export Citation Format

Share Document