Isolation and characterization of novel bioactive compounds from Taxus baccata and Swertia chirata found in Uttarakhand region for their effect on multidrug resistant strains

2021 ◽  
Vol 9 (2) ◽  
pp. 423
Author(s):  
Ahmed Esmael ◽  
Ehab Azab ◽  
Adil A. Gobouri ◽  
Mohamed A. Nasr-Eldin ◽  
Mahmoud M. A. Moustafa ◽  
...  

Foodborne salmonellosis is a global threat to public health. In the current study, we describe the isolation and characterization of two broad-spectrum, lytic Salmonella phages: SPHG1 and SPHG3 infecting a multidrug-resistant Salmonella Typhimurium EG.SmT3. Electron microscopy and whole genome analysis identified SPHG1 as a Myovirus, while SPHG3 as a new member of the genus “Kuttervirus” within the family Ackermannviridae. SPHG1 and SPHG3 had a lysis time of 60 min. with burst sizes of 104 and 138 PFU/cell, respectively. The two phages were robust at variable temperatures and pH ranges that match the corresponding values of most of the food storage and processing conditions. A phage cocktail containing the two phages was stable in the tested food articles for up to 48 h. The application of the phage cocktail at MOIs of 1000 or 100 resulted in a significant reduction in the viable count of S. Typhimurium by 4.2 log10/sample in milk, water, and on chicken breast. Additionally, the phage cocktail showed a prospective ability to eradicate and reduce the biofilm that formed by S. Typhimurium EG.SmT3. A phage cocktail of SPHG1 and SPHG3 is considered as a promising candidate as a biocontrol agent against foodborne salmonellosis due to its broad host ranges, highly lytic activities, and the absence of any virulence or lysogeny-related genes in their genomes.


2015 ◽  
Vol 2 (2) ◽  
pp. 229-237
Author(s):  
Istiaq Ahmed ◽  
Md Tofazzal Islam ◽  
Md Akhter Hossain Chowdhury ◽  
Md Kamruzzaman

This study was carried out to isolate, screen and characterize arsenic (As) resistant bacteria from As contaminated soils of Dumrakandi and Matlab under Faridpur and Chandpur districts and to evaluate their efficiency in reducing As toxicity against rice seedlings during germination. Thirteen strains were isolated from the soils which showed resistance to different levels of sodium arsenite (viz. 5, 10, 20 and 40 mM) in both agar plate and broth assay using BSMY I media. Among the isolates, BTL0011, BTL0012, BTL0015 and BTL0022 showed highest resistance to 40 mM sodium arsenite. Gram staining and KOH solubility test revealed that five strains were gram positive and rest eight was gram negative. They grew well in the liquid media at pH 5.5 to 8.5. In-vitro rice seedling bioassay with two superior isolates (BTL0011 and BTL0022) revealed that As resistant strains significantly enhanced seed germination of BRRI dhan29 and BRRI dhan47 at 60 ppm As. This study was laid out in CRD with three replications. The performance of BTL 0022 was superior to BTL0011. The overall results suggest that BTL0011 and BTL0022 can be used for bioremediation of As contaminated soils and to increase the germination and seedling growth of rice in As contaminated soils.Res. Agric., Livest. Fish.2(2): 229-237, August 2015


Anaerobe ◽  
2013 ◽  
Vol 22 ◽  
pp. 45-49 ◽  
Author(s):  
Teresa Peláez ◽  
Luis Alcalá ◽  
José L. Blanco ◽  
Sergio Álvarez-Pérez ◽  
Mercedes Marín ◽  
...  

2013 ◽  
Vol 19 (3) ◽  
pp. 185-190 ◽  
Author(s):  
Zaket Baba Ahmed-Kazi Tani ◽  
Dominique Decré ◽  
Nathalie Genel ◽  
Zahia Boucherit-Otmani ◽  
Guillaume Arlet ◽  
...  

Pathogens ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
Carlos E. C. Matajira ◽  
Luisa Z. Moreno ◽  
Andre P. Poor ◽  
Vasco T. M. Gomes ◽  
Andressa C. Dalmutt ◽  
...  

Streptococcus suis remains an important challenge for the worldwide swine industry. Considering that Brazil is a major pork producer and exporter, proper monitoring of the pathogen and resistance rates are required. We present here the characterization of Brazilian S. suis strains isolated over a 15 year period by pulsed-field gel electrophoresis (PFGE) typing, capsular, virulence, and antimicrobial resistance profiling. Serotype prevalence revealed a predominance of serotype 2/½ followed by 3, 7, 1/14, 6, 8, 18, 28, and 27; the latter had not yet been reported in Brazil. Resistance profiling enabled the differentiation of nine profiles presenting resistance to three and up to eight antimicrobial classes. Even though an association between the most resistant strains and isolation year starting from 2009 was observed, a high frequency of multidrug-resistant strains isolated from 2001 to 2003 was also detected. This suggests that despite the isolation period, S. suis strains already presented high resistance selection pressure. A slight association of serotype 2/½ with some virulence profiles and PFGE pulsotypes was also identified. Nevertheless, no clonal dispersion or persistency of clones over the analyzed years and herds was detected.


2020 ◽  
Vol 21 (9) ◽  
pp. 3160 ◽  
Author(s):  
Pilar Domingo-Calap ◽  
Beatriz Beamud ◽  
Lucas Mora-Quilis ◽  
Fernando González-Candelas ◽  
Rafael Sanjuán

The emergence of multidrug-resistant bacteria is a major global health concern. The search for new therapies has brought bacteriophages into the spotlight, and new phages are being described as possible therapeutic agents. Among the bacteria that are most extensively resistant to current antibiotics is Klebsiella pneumoniae, whose hypervariable extracellular capsule makes treatment particularly difficult. Here, we describe two new K. pneumoniae phages, πVLC5 and πVLC6, isolated from environmental samples. These phages belong to the genus Drulisvirus within the family Podoviridae. Both phages encode a similar tail spike protein with putative depolymerase activity, which is shared among other related phages and probably determines their ability to specifically infect K. pneumoniae capsular types K22 and K37. In addition, we found that phage πVLC6 also infects capsular type K13 and is capable of striping the capsules of K. pneumoniae KL2 and KL3, although the phage was not infectious in these two strains. Genome sequence analysis suggested that the extended tropism of phage πVLC6 is conferred by a second, divergent depolymerase. Phage πVLC5 encodes yet another putative depolymerase, but we found no activity of this phage against capsular types other than K22 and K37, after testing a panel of 77 reference strains. Overall, our results confirm that most phages productively infected one or few Klebsiella capsular types. This constitutes an important challenge for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document