Improved synthesis of 6-(4-methoxyphenyl)-2,4-dichloro-1,3,5-triazine and 2,4-bis(resorcinyl)-substituted UV light absorbing derivatives

2008 ◽  
Vol 2008 (11) ◽  
pp. 664-665 ◽  
Author(s):  
Wen-Feng Jiang ◽  
Hui-Long Wang ◽  
Zhe-Qi Li

Pure 6-(4-methoxyphenyl)-2,4-dichloro-1,3,5-triazine was synthesised by a method that did not involve the troublesome Grignard reaction of 4-bromo-anisole. A series of bis(resorcinyl) triazine derivatives which can be used as UV light absorbers were subsequently prepared by utilising 6-(4-methoxyphenyl)-2,4-dichloro-1,3,5-triazine as the starting material via alkylation or acid-catalysed addition reactions.

2021 ◽  
Vol 105 (1) ◽  
pp. 431-440
Author(s):  
Pavel Šafl ◽  
Jana Zimáková ◽  
Tomáš Binar

The aim of this work is to study the climatic influences on 3D printed materials. This study focuses on the HIPS material, which was chosen as the starting material for further studies. The material in the field of 3D printing is known for its rapid photooxidation, which results in the formation of cracks in the final product. A climatic chamber was used for degradation, in which UV light, heat and increased humidity were applied to the material. The degree of degradation was then checked by tensile test and electron microscope.


2016 ◽  
Vol 22 (2) ◽  
pp. 95-98 ◽  
Author(s):  
Ilgvalds Ivanovs ◽  
Santa Bērziņa ◽  
Jevgeņija Lugiņina ◽  
Sergey Belyakov ◽  
Vitālijs Rjabovs

AbstractMichael addition reactions of O-nucleophiles to C(3) exocyclic nitromethylene derivative of diacetone glucose are reported. The reactions with primary alcohols proceed at ambient temperature in the presence of different bases with good yields and give products with excellent diastereoselectivity. The addition of the nucleophile occurs from the β-face of the carbohydrate as shown by single crystal X-ray analysis. The reactions with secondary alcohols give low yields of products while phenolic compounds do not react. Under certain conditions, isomerization of starting material is observed.


Author(s):  
Debby A. Jennings ◽  
Michael J. Morykwas ◽  
Louis C. Argenta

Grafts of cultured allogenic or autogenic keratlnocytes have proven to be an effective treatment of chronic wounds and burns. This study utilized a collagen substrate for keratinocyte and fibroblast attachment. The substrate provided mechanical stability and augmented graft manipulation onto the wound bed. Graft integrity was confirmed by light and transmission electron microscopy.Bovine Type I dermal collagen sheets (100 μm thick) were crosslinked with 254 nm UV light (13.5 Joules/cm2) to improve mechanical properties and reduce degradation. A single cell suspension of third passage neonatal foreskin fibroblasts were plated onto the collagen. Five days later, a single cell suspension of first passage neonatal foreskin keratinocytes were plated on the opposite side of the collagen. The grafts were cultured for one month.The grafts were fixed in phosphate buffered 4% formaldehyde/1% glutaraldehyde for 24 hours. Graft pieces were then washed in 0.13 M phosphate buffer, post-fixed in 1% osmium tetroxide, dehydrated, and embedded in Polybed 812.


Author(s):  
W. Engel ◽  
M. Kordesch ◽  
A. M. Bradshaw ◽  
E. Zeitler

Photoelectron microscopy is as old as electron microscopy itself. Electrons liberated from the object surface by photons are utilized to form an image that is a map of the object's emissivity. This physical property is a function of many parameters, some depending on the physical features of the objects and others on the conditions of the instrument rendering the image.The electron-optical situation is tricky, since the lateral resolution increases with the electric field strength at the object's surface. This, in turn, leads to small distances between the electrodes, restricting the photon flux that should be high for the sake of resolution.The electron-optical development came to fruition in the sixties. Figure 1a shows a typical photoelectron image of a polycrystalline tantalum sample irradiated by the UV light of a high-pressure mercury lamp.


Author(s):  
Ś Lhoták ◽  
I. Alexopoulou ◽  
G. T. Simon

Various kidney diseases are characterized by the presence of dense deposits in the glomeruli. The type(s) of immunoglobulins (Igs) present in the dense deposits are characteristic of the disease. The accurate Identification of the deposits is therefore of utmost diagnostic and prognostic importance. Immunofluorescence (IF) used routinely at the light microscopical level is unable to detect and characterize small deposits found in early stages of glomerulonephritis. Although conventional TEM is able to localize such deposits, it is not capable of determining their nature. It was therefore attempted to immunolabel at EM level IgG, IgA IgM, C3, fibrinogen and kappa and lambda Ig light chains commonly found in glomerular deposits on routinely fixed ( 2% glutaraldehyde (GA) in 0.1M cacodylate buffer) kidney biopsies.The unosmicated tissue was embedded in LR White resin polymerized by UV light at -10°C. A postembedding immunogold technique was employed


2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


Sign in / Sign up

Export Citation Format

Share Document