scholarly journals Wave mixing in a system of moving coaxial cylinders

2019 ◽  
Vol 486 (1) ◽  
pp. 30-33
Author(s):  
R. F. Ganiev ◽  
D. L. Reviznikov ◽  
T. Yu. Sukharev ◽  
L. E. Ukrainskii

The results of computer simulation of mixing in a system of moving coaxial cylinders are presented. Detailed spatial-temporal pictures of the processes occurring were obtained and the main structures in the flow field were determined. Based on the analysis of the singular points of the vector velocity field of the liquid, a method for profiling the rotor is proposed. Introduced dimensionless quantities, the use of which allows the transition from laboratory bench installations to real production devices.

2020 ◽  
Vol 23 (1) ◽  
pp. 28-40
Author(s):  
K. I. Galaeva

The article presents the tasks, characteristic features, tactical and technical characteristics, the possible location and scope of the near-airfield meteorological radar complex. The analysis is made of the comparison of meteorological radar data from the near-airfield meteorological radar complex with reliable sources of meteorological information obtained during preliminary, acceptance, certification tests. The features of carrying out during the validation tests of meteorological radar data of the near-airfield meteorological radar complex are described, namely: dangerous meteorological phenomena (showers of different intensities, thunderstorms with a probability of 30-70%, 71-90%, > 90%, hail of varying degrees of intensity, squall of different intensities), velocity and direction of movement of cloud formations, vector velocity field. Examples of comparing the data of the near-airfield meteorological radar complex with data from a priori reliable sources of information are shown in the form of maps, graphs and tables. It is shown that the data of the near-airfield meteorological radar complex were obtained during testing and certification covering the warm and cold periods of the year, the sample size is statistically significant (except for the sample to assess the vector velocity field from data of aircraft and radar due to the spatial-temporal features comparing data from the two indicated information sources). It was established that the near-airfield meteorological radar complex provides acceptable in accordance with the requirements the construction quality of meteorological phenomena maps, the vector velocity field and the estimation of the cloud formations movement vector. The article illustrates the results of the statistical analysis of the data of the near-airfield meteorological radar complex, obtained personally by the author of the article. Analysis of meteorological data of the near-airfield meteorological radar complex was carried out with the aim of further exploitation of the near-airfield meteorological radar complex.


1968 ◽  
Vol 90 (1) ◽  
pp. 45-50
Author(s):  
R. G. Fenton

The upper bound of the average ram pressure, based on an assumed radial flow velocity field, is derived for plane strain extrusion. Ram pressures are calculated for a complete range of reduction ratios and die angles, considering a wide range of frictional conditions. Results are compared with upper-bound ram pressures obtained by considering velocity fields other than the radial flow field, and it is shown that for a considerable range of reduction ratios and die angles, the radial flow field yields better upper bounds for the average ram pressure.


1988 ◽  
Vol 110 (2) ◽  
pp. 134-139 ◽  
Author(s):  
M. A. Ortega ◽  
J. T. Sielawa

The thermally induced flow field, in a rapidly rotating container consisting of a pair of coaxial cylinders bounded on the top and bottom by horizontal end plates, is considered. The top plate is heated and the bottom plate is cooled, both by small amounts, so that the thermal Rossby number is small, and the cylinders are supposed to be conductive. The induced velocity and temperature fields are determined by subdivision of the flow field; the equation for the central part, the inner core, is solved numerically as well as analytically.


Author(s):  
Raju Ananth ◽  
Karen Fujikawa ◽  
Jay Gillis

This paper presents a theoretical study of the velocity field in the annulus formed between the Reactor Pressure Vessel (RPV) and the shroud of a Boiling Water Reactor (BWR) under normal and accident flow conditions. Simplified geometry and an ideal irrotational flow are assumed to solve the problem using velocity potentials.


1984 ◽  
Author(s):  
P. Kotidis ◽  
P. Chaviaropoulos ◽  
K. D. Papailiou

The development of transverse velocity profile is directly related to the development of secondary vorticity. In the internal aerodynamics case with potential external flow, although vorticity remains confined inside the viscous shear layer, secondary vorticity induced velocities exist outside of it. If the secondary vorticity field is known, the induced secondary velocity field is well approximated following Hawthorne’s classical analysis. In the present work, the above analysis is used to separate the velocity field in the transverse plane into a potential and a rotational part. In the case of confined flows, the rotational part is confined inside the viscous shear layer, while the potential part occupies the whole flow field. This last part is the consequence of the “displacement” effects of the shear layer in the transverse plane. Therefore, the present work allows a re-examination of the flow two-zone model (separation of the flow field in a viscous and an inviscid part) in confined flows. On the other hand, the limitations of Hawthorne’s theory are examined, while a parallel analysis is presented for the case where the secondary vorticity distribution varies not only along the blade height, but also circumferentially.


1976 ◽  
Vol 73 (4) ◽  
pp. 641-650 ◽  
Author(s):  
C. Sozou ◽  
W. M. Pickering

In this paper we consider the flow field induced in an incompressible viscous conducting fluid in a hemispherical bowl by a symmetric discharge of electric current from a point source at the centre of the plane end of the hemisphere. This plane end is a free surface. We construct an analytic solution for the slow viscous flow and a numeriacl solution for the nonlinear problem. The streamlines in an axial cross-section form two sets of closed loops, one on either side of the axis. Our computations indicate that, for a given fluid, when the discharged current reaches a certain magnitude the velocity field breaks down. This breakdown probably originates at the vertex of the hemispherical container.


1997 ◽  
Vol 337 ◽  
pp. 49-66 ◽  
Author(s):  
Q. CHEN ◽  
E. RAMÉ ◽  
S. GAROFF

The dynamics of a spreading liquid body are dictated by the interface shape and flow field very near the moving contact line. The interface shape and flow field have been described by asymptotic models in the limit of small capillary number, Ca. Previous work established the validity and limitations of these models of the interface shape (Chen et al. 1995). Here, we study the flow field near the moving contact line. Using videomicroscopy, particle image velocimetry, and digital image analysis, we simultaneously make quantitative measurements of both the interface shape and flow field from 30 μm to a few hundred microns from the contact line. We compare our data to the modulated-wedge solution for the velocity field near a moving contact line (Cox 1986). The measured flow fields demonstrate quantitative agreement with predictions for Ca[les ]0.1, but deviations of ∼5% of the spreading velocity at Ca≈0.4. We observe that the interface shapes and flow fields become geometry independent near the contact line. Our experimental technique provides a way of measuring the interface shape and velocity field to be used as boundary conditions for numerical calculations of the macroscopic spreading dynamics.


2019 ◽  
Vol 213 ◽  
pp. 02076
Author(s):  
Jan Sip ◽  
Frantisek Lizal ◽  
Jakub Elcner ◽  
Jan Pokorny ◽  
Miroslav Jicha

The velocity field in the area behind the automotive vent was measured by hot-wire anenemometry in detail and intensity of turbulence was calculated. Numerical simulation of the same flow field was performed using Computational fluid dynamics in commecial software STAR-CCM+. Several turbulence models were tested and compared with Large Eddy Simulation. The influence of turbulence model on the results of air flow from the vent was investigated. The comparison of simulations and experimental results showed that most precise prediction of flow field was provided by Spalart-Allmaras model. Large eddy simulation did not provide results in quality that would compensate for the increased computing cost.


Sign in / Sign up

Export Citation Format

Share Document