scholarly journals After six decades of monitoring glacier mass balance we still need data but it should be richer data

2009 ◽  
Vol 50 (50) ◽  
pp. 191-197 ◽  
Author(s):  
Roger J. Braithwaite

AbstractThis paper reviews data on glacier mass balance together with extra metadata on topography and climate to put the data into context. The 2007 Intergovernmental Panel on Climate Change (IPCC) estimates of global average glacier mass balance may not be much different from simple averages. A more mathematically correct approach is to analyse long and continuous mass-balance series measured in different regions, but there are few long series and they do not cover the globe in any representative way. However, 30 year series from 30 glaciers confirm a recent (1996–2005) trend to very negative mass balance after two decades of nearly zero mass balance. Climate data from a global gridded climatology are applied to datasets for global glacier cover, for 318 glaciers with mass-balance data for at least 1 year and for 30 glaciers with 30 year series of measurements. Results show that mean precipitation is relatively low in the global glacier-cover dataset and much higher for the observed glaciers. This shows that current mass-balance measurements are biased towards wetter conditions than are typical for global glacier cover. We urgently need to find better ways of analysing sparse datasets with ‘complex spatial and temporal patterns’ like the present mass-balance dataset.

2017 ◽  
Vol 63 (238) ◽  
pp. 331-342 ◽  
Author(s):  
YUSHAN ZHOU ◽  
ZHIWEI LI ◽  
JIA LI

ABSTRACTAn anomalously slight glacier mass gain during 2000 to the 2010s has recently been reported in the Karakoram region. However, to date, no investigations of the region-wide glacier mass balance in the Karakoram prior to 2000 have been reported, leaving a knowledge gap for assessing glacier responses to climate change. We calculated elevation and mass change using DEMs generated from KH-9 images acquired during 1973–1980 and the 1 arc-second SRTM DEM. We find a slight mass loss of −0.09 ± 0.03 m w.e. a−1 (12 366 km2) for 1973–2000, which is less negative than the global average rate for 1971–2009 (−0.31 ± 0.19 m w.e. a−1). Within the Karakoram, the glacier change patterns are spatially and temporally heterogeneous. In particular, a nearly stable state in the central Karakoram (−0.04 ± 0.05 m w.e. a−1 during the period 1974–2000) implies that the Karakoram anomaly dates back to the 1970s. Combined with the previous studies, we conclude that the Karakoram glaciers as a whole were in a nearly balanced state during the 1970s to the 2010s.


2021 ◽  
Author(s):  
Erik Engström ◽  
Cesar Azorin-Molina ◽  
Lennart Wern ◽  
Sverker Hellström ◽  
Christophe Sturm ◽  
...  

<p>Here we present the progress of the first work package (WP1) of the project “Assessing centennial wind speed variability from a historical weather data rescue project in Sweden” (WINDGUST), funded by FORMAS – A Swedish Research Council for Sustainable Development (ref. 2019-00509); previously introduced in EGU2019-17792-1 and EGU2020-3491. In a global climate change, one of the major uncertainties on the causes driving the climate variability of winds (i.e., the “stilling” phenomenon and the recent “recovery” since the 2010s) is mainly due to short availability (i.e., since the 1960s) and low quality of observed wind records as stated by the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC).</p><p>The WINDGUST is a joint initiative between the Swedish Meteorological and Hydrological Institute (SMHI) and the University of Gothenburg aimed at filling the key gap of short availability and low quality of wind datasets, and improve the limited knowledge on the causes driving wind speed variability in a changing climate across Sweden.</p><p>During 2020, we worked in WP1 to rescue historical wind speed series available in the old weather archives at SMHI for the 1920s-1930s. In the process we followed the “Guidelines on Best Practices for Climate Data Rescue” of the World Meteorological Organization. Our protocol consisted on: (i) designing a template for digitization; (ii) digitizing papers by an imaging process based on scanning and photographs; and (iii) typing numbers of wind speed data into the template. We will report the advances and current status, challenges and experiences learned during the development of WP1. Until new year 2020/2021 eight out of thirteen selected stations spanning over the years 1925 to 1948 have been scanned and digitized by three staff members of SMHI during 1,660 manhours.</p>


2013 ◽  
Vol 7 (4) ◽  
pp. 1227-1245 ◽  
Author(s):  
M. Zemp ◽  
E. Thibert ◽  
M. Huss ◽  
D. Stumm ◽  
C. Rolstad Denby ◽  
...  

Abstract. Glacier-wide mass balance has been measured for more than sixty years and is widely used as an indicator of climate change and to assess the glacier contribution to runoff and sea level rise. Until recently, comprehensive uncertainty assessments have rarely been carried out and mass balance data have often been applied using rough error estimation or without consideration of errors. In this study, we propose a framework for reanalysing glacier mass balance series that includes conceptual and statistical toolsets for assessment of random and systematic errors, as well as for validation and calibration (if necessary) of the glaciological with the geodetic balance results. We demonstrate the usefulness and limitations of the proposed scheme, drawing on an analysis that comprises over 50 recording periods for a dozen glaciers, and we make recommendations to investigators and users of glacier mass balance data. Reanalysing glacier mass balance series needs to become a standard procedure for every monitoring programme to improve data quality, including reliable uncertainty estimates.


1996 ◽  
Vol 7 (4) ◽  
pp. 333-348 ◽  
Author(s):  
Patrick J. Michaels ◽  
Paul C. Knappenberger

Climate data support the “moderate” prediction of climate change (l-1.5°C) rather than the more extreme scenario (4°C or more). The moderate point of view was originally marginalized in the IPCC “consensus” process in both the 1990 First Assessment on Climate Change and in the 1992 Update prepared specifically for the Earth Summit and to provide backing for the Rio Framework Convention on Climate Change. It is now accepted, based on ground-based data, that the errors in those models are currently between 160% and 360%. If one compares them to the satellite data combined with the land record, the error rises to a maximum of 720%. In some recognition of this massive error, the 1995 IPCC “consensus” is that warming has been mitigated by sulfate aerosols. However, when that hypothesis is specifically tested, it fails. Further, data required to test the validity of the sulfate enhanced greenhouse models was withheld by the IPCC. despite repeated requests.


2021 ◽  
Vol 43 ◽  
pp. e56026
Author(s):  
Gabriela Leite Neves ◽  
Jorim Sousa das Virgens Filho ◽  
Maysa de Lima Leite ◽  
Frederico Fabio Mauad

Water is an essential natural resource that is being impacted by climate change. Thus, knowledge of future water availability conditions around the globe becomes necessary. Based on that, this study aimed to simulate future climate scenarios and evaluate the impact on water balance in southern Brazil. Daily data of rainfall and air temperature (maximum and minimum) were used. The meteorological data were collected in 28 locations over 30 years (1980-2009). For the data simulation, we used the climate data stochastic generator PGECLIMA_R. It was considered two scenarios of the fifth report of the Intergovernmental Panel on Climate Change (IPCC) and a scenario with the historical data trend. The water balance estimates were performed for the current data and the simulated data, through the methodology of Thornthwaite and Mather (1955). The moisture indexes were spatialized by the kriging method. These indexes were chosen as the parameters to represent the water conditions in different situations. The region assessed presented a high variability in water availability among locations; however, it did not present high water deficiency values, even with climate change. Overall, it was observed a reduction of moisture index in most sites and in all scenarios assessed, especially in the northern region when compared to the other regions. The second scenario of the IPCC (the worst situation) promoting higher reductions and dry conditions for the 2099 year. The impacts of climate change on water availability, identified in this study, can affect the general society, therefore, they must be considered in the planning and management of water resources, especially in the regional context


2020 ◽  
Vol 66 (258) ◽  
pp. 530-542 ◽  
Author(s):  
Christopher McNeil ◽  
Shad O'Neel ◽  
Michael Loso ◽  
Mauri Pelto ◽  
Louis Sass ◽  
...  

AbstractWe reanalyzed mass balance records at Taku and Lemon Creek Glaciers to better understand the relative roles of hypsometry, local climate and dynamics as mass balance drivers. Over the 1946–2018 period, the cumulative mass balances diverged. Tidewater Taku Glacier advanced and gained mass at an average rate of +0.25 ± 0.28 m w.e. a–1, contrasting with retreat and mass loss of −0.60 ± 0.15 m w.e. a−1 at land-terminating Lemon Creek Glacier. The uniform influence of regional climate is demonstrated by strong correlations among annual mass balance and climate data. Regional warming trends forced similar statistically significant decreases in surface mass balance after 1989: −0.83 m w.e. a–1 at Taku Glacier and −0.81 m w.e. a–1 at Lemon Creek Glacier. Divergence in cumulative mass balance arises from differences in glacier hypsometry and local climate. Since 2013 negative mass balance and glacier-wide thinning prevailed at Taku Glacier. These changes initiated terminus retreat, which could increase dramatically if calving begins. The future mass balance trajectory of Taku Glacier hinges on dynamics, likely ending the historic dichotomy between these glaciers.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Farzin Shahbazi ◽  
Ali Jafarzadeh ◽  
Mohammad Shahbazi

AbstractSoil erosion and contamination are two main desertification indices or land degradation agents in agricultural areas. Global climate change consequence is a priority to predict global environmental change impacts on these degradation risks. This agro-ecological approach can be especially useful when formulating soil specific agricultural practices based on the spatial variability of soils and related resources to reverse environmental degradation. Raizal and Pantanal models within the new MicroLEIS framework, the Ero&Con package, are database/expert system evaluation approach for assessing limitations to land use, or vulnerability of the land to specified agricultural degradation risks. This study was performed in Souma area with approximately 4100 ha extension in the North-West of Iran (west Azarbaijan). Based on 35 sampling soils, Typic Xerofluvents, Typic Calcixerepts, Fluventic Haploxerepts and Fluventic Endaquepts were classified as main subgroups. Climatological data, referred to temperature and precipitation of more than 36 consecutive years were collected from Urmieh station reports and stored in monthly Climate Database CDBm, as a major component of MicroLEIS DSS (CDBm) program. Climate data for a hypothetical future scenario were collected from the Intergovernmental Panel on Climate Change (IPCC) reports for the 2080s period. The evaluation approach predicts that attainable water erosion vulnerability classes were none (V1) very low (V2) and moderately low (V4) in the total of 72%, 13% and 15% of the Souma area, respectively and they will not affected by climate change. On contrary, attainable wind erosion vulnerability classes will increase. Also, phosphorous and heavy metal contamination vulnerability risks will not differ in two compared scenarios while nitrogen and pesticides vulnerability classes will be improved.


Sign in / Sign up

Export Citation Format

Share Document