20th-century climate change inferred from four long-term point observations of seasonal mass balance

2009 ◽  
Vol 50 (50) ◽  
pp. 207-214 ◽  
Author(s):  
Matthias Huss ◽  
Andreas Bauder

AbstractFour long-term time series of seasonal mass-balance observations, all starting in 1914, have been compiled for two stakes on Claridenfirn and one stake on Grosser Aletschgletscher and Silvrettagletscher, Switzerland. These data represent the longest records of mass balance worldwide. A mass-balance model based on the temperature-index approach is used to correct field data for varying observation dates and data gaps and to separate accumulation and ablation. The homogenized continuous 93 year time series cover most of the 20th century and enable us to investigate temporal, regional and altitudinal variability in mass balance and changes in the climatic forcing on glaciers. A high-altitude site shows summer balance trends opposite to those at three stakes located near the equilibrium line. Since 1975, melt rates have increased by 10%(10 a)−1 periods of enhanced climatic forcing are detected: 1943–53 and 1987–2007. The energy consumed for melt was higher in the 1940s despite lower air temperatures compared to the years since 1987. We find evidence for a change in the glacier surface heat budget, which has important implications for the long-term stability of degree-day factors in empirical temperature-index modelling.

2019 ◽  
Author(s):  
Martin Stocker-Waldhuber ◽  
Andrea Fischer ◽  
Kay Helfricht ◽  
Michael Kuhn

Abstract. Climatic forcing affects glacier mass balance and ice flow dynamics on different time scales, resulting in length changes. Mass Balance and length changes are operationally used for glacier monitoring, whereas only a few time series of glacier dynamics have been recorded. With more than 100 years of measurements of ice flow velocities at stakes and stone lines on Hintereisferner and more than 50 years on Kesselwandferner, annual velocity and glacier fluctuation records have similar lengths. Subseasonal variations of ice flow velocities have been measured on Gepatschferner and Taschachferner for nearly a decade. The ice flow velocities on Hintereisferner and especially on Kesselwandferner show great variations between advancing and retreating periods, with magnitudes increasing from the highest to the lowest stakes, making ice flow records at ablation stakes a very sensitive indicator of glacier state. Since the end of the latest glacier advances from the 1970s to the 1980s, the ice flow velocities have decreased continuously, a strong indicator of the negative mass balances of the glaciers in recent decades. The velocity data sets of the four glaciers are available at https://doi.pangaea.de/10.1594/PANGAEA.896741.


2009 ◽  
Vol 50 (50) ◽  
pp. 198-206 ◽  
Author(s):  
Matthias Huss ◽  
Andreas Bauder ◽  
Martin Funk

AbstractThe re-analysis of long-term mass-balance time series is important to provide bias-corrected mass-balance data for climate-change impact studies. A method to homogenize time series of comprehensive mass-balance monitoring programmes is presented and applied to the nearly 50 year mass-balance records of Griesgletscher and Silvrettagletscher, Switzerland. Using a distributed mass-balance model in daily resolution we correct the mass-balance data for varying observation dates. Direct point measurements are combined with independent geodetic mass changes, a prerequisite for a thorough homogenization of mass-balance records. Differences between mass balance evaluated in the hydrological year or according to the measurement period and the stratigraphic system are analysed and may be up to ±0.5mw.e. a−1. Cumulative mass balance of both glaciers based on the glaciological method generally agrees well with geodetic mass change on the investigated glaciers. However, for Silvretta-gletscher a significant bias of +0.37mw.e. a−1 has been detected and corrected for since 1994.


2019 ◽  
Vol 11 (2) ◽  
pp. 705-715 ◽  
Author(s):  
Martin Stocker-Waldhuber ◽  
Andrea Fischer ◽  
Kay Helfricht ◽  
Michael Kuhn

Abstract. Climatic forcing affects glacier mass balance, which causes changes in ice flow dynamics and glacier length changes on different timescales. Mass balance and length changes are operationally used for glacier monitoring, whereas only a few time series of glacier dynamics have been recorded. Here we present a unique dataset of yearly averaged ice flow velocity measurements at stakes and stone lines covering more than 100 years on Hintereisferner and more than 50 years on Kesselwandferner. Moreover, the dataset contains sub-seasonal variations in ice flow from Gepatschferner and Taschachferner covering almost 10 years. The ice flow velocities on Hintereisferner and (especially) on Kesselwandferner show great variation between advancing and retreating periods, with magnitudes increasing from the stakes at higher elevations to the lower-elevated stakes, making ice flow records at ablation stakes a very sensitive indicator of glacier state. Since the end of the latest glacier advances from the 1970s to the 1980s, the ice flow velocities have decreased continuously, a strong indicator of the negative mass balances of the glaciers in recent decades. The velocity datasets of the four glaciers are available at https://doi.org/10.1594/PANGAEA.896741.


2018 ◽  
Vol 19 (5) ◽  
pp. 803-814 ◽  
Author(s):  
Gregory J. McCabe ◽  
David M. Wolock ◽  
Melissa Valentin

Abstract Winter snowfall and accumulation is an important component of the surface water supply in the western United States. In these areas, increasing winter temperatures T associated with global warming can influence the amount of winter precipitation P that falls as snow S. In this study we examine long-term trends in the fraction of winter P that falls as S (Sfrac) for 175 hydrologic units (HUs) in snow-covered areas of the western United States for the period 1951–2014. Because S is a substantial contributor to runoff R across most of the western United States, we also examine long-term trends in water-year runoff efficiency [computed as water-year R/water-year P (Reff)] for the same 175 HUs. In that most S records are short in length, we use model-simulated S and R from a monthly water balance model. Results for Sfrac indicate long-term negative trends for most of the 175 HUs, with negative trends for 139 (~79%) of the HUs being statistically significant at a 95% confidence level (p = 0.05). Additionally, results indicate that the long-term negative trends in Sfrac have been largely driven by increases in T. In contrast, time series of Reff for the 175 HUs indicate a mix of positive and negative long-term trends, with few trends being statistically significant (at p = 0.05). Although there has been a notable shift in the timing of R to earlier in the year for most HUs, there have not been substantial decreases in water-year R for the 175 HUs.


1999 ◽  
Vol 45 (151) ◽  
pp. 559-567 ◽  
Author(s):  
Rijan Bhakta Kayastha ◽  
Tetsuo Ohata ◽  
Yutaka Ageta

AbstractA mass-balance model based on the energy balance at the snow or ice surface is formulated, with particular attention paid to processes affecting absorption of radiation. The model is applied to a small glacier, Glacier AX010 in the Nepalese Himalaya, and tests of its mass-balance sensitivity to input and climatic parameters are carried out. Calculated and observed area-averaged mass balances of the glacier during summer 1978 (June-September) show good agreement, namely -0.44 and -0.46 m w.e., respectively.Results show the mass balance is strongly sensitive to snow or ice albedo, to the effects of screening by surrounding mountain walls, to areal variations in multiple reflection between clouds and the glacier surface, and to thin snow covers which alter the surface albedo. In tests of the sensitivity of the mass balance to seasonal values of climatic parameters, the mass balance is found to be strongly sensitive to summer air temperature and precipitation but only weakly sensitive to relative humidity.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2865
Author(s):  
Puyu Wang ◽  
Zhongqin Li ◽  
Christoph Schneider ◽  
Hongliang Li ◽  
Alexandra Hamm ◽  
...  

In this study, energy and mass balance is quantified using an energy balance model to represent the glacier melt of Urumqi Glacier No. 1, Chinese Tian Shan. Based on data from an Automatic Weather Station (4025 m a.s.l) and the mass balance field survey data nearby on the East Branch of the glacier, the “COupled Snowpack and Ice surface energy and Mass balance model” (COSIMA) was used to derive energy and mass balance simulations during the ablation season of 2018. Results show that the modeled cumulative mass balance (−0.67 ± 0.03 m w.e.) agrees well with the in-situ measurements (−0.64 ± 0.16 m w.e.) (r2 = 0.96) with the relative difference within 5% during the study period. The correlation coefficient between modeled and observed surface temperatures is 0.88 for daily means. The main source of melt energy at the glacier surface is net shortwave radiation (84%) and sensible heat flux (16%). The energy expenditures are from net longwave radiation (55%), heat flux for snow/ice melting (32%), latent heat flux of sublimation and evaporation (7%), and subsurface heat flux (6%). The sensitivity testing of mass balance shows that mass balance is more sensitive to temperature increase and precipitation decrease than temperature decrease and precipitation increase.


1998 ◽  
Vol 44 (147) ◽  
pp. 333-351 ◽  
Author(s):  
B.T. Rabus ◽  
K. A. Echelmeyer

AbstractMcCall Glacier has the only long-term mass-balance record in Arctic-Alaska. Average annual balances over the periods 1958–72 and 1972–93 were –15 and –33cm, respectively; recent annual balances (1993–96) are about –60 cm, and the mass-balance gradient has increased. For an Arctic glacier, with its low mass-exchange rate, this marks a significant negative trend.Recently acquired elevation profiles of McCall Glacier and ten other glaciers within a 30 km radius were compared with topographic maps made in 1956 or 1973. Most of these glaciers had average annual mass balances between –25 and –33 cm, while McCall Glacier averaged –28 cm for 1956–93, indicating that it is representative of the region. In contrast, changes in terminus position for the different glaciers vary markedly. Thus, mass-balance trends in this region cannot be estimated from fractional length changes at time-scales of a few decades.We developed a simple degree-day/accumulation mass-balance model for McCall Glacier. The model was tested using precipitation and radiosonde temperatures from weather stations at Inuvik, Canada, and Barrow, Kaktovik and Fairbanks, Alaska, and was calibrated with the measured balances. The Inuvik data reproduce all measured mass balances of McCall Glacier well and also reproduce the long-term trend towards more negative balances. Data from the other stations do not produce satisfactory model results. We speculate that the Arctic Front, oriented east–west in this region, causes the differences in model results.


2019 ◽  
Vol 65 (252) ◽  
pp. 605-616 ◽  
Author(s):  
SOJIRO SUNAKO ◽  
KOJI FUJITA ◽  
AKIKO SAKAI ◽  
RIJAN B. KAYASTHA

ABSTRACTWe conducted a mass-balance study of debris-free Trambau Glacier in the Rolwaling region, Nepal Himalaya, which is accessible to 6000 m a.s.l., to better understand mass-balance processes and the effect of precipitation on these processes on high-elevation Himalayan glaciers. Continuous in situ meteorological and mass-balance observations that spanned the three melt seasons from May 2016 are reported. An energy- and mass-balance model is also applied to evaluate its performance and sensitivity to various climatic conditions. Glacier-wide mass balances ranging from −0.34 ± 0.38 m w.e. in 2016 to −0.82 ± 0.53 m w.e. in 2017/18 are obtained by combining the observations with model results for the areas above the highest stake. The estimated long-term glacier mass balance, which is reconstructed using the ERA-Interim data calibrated with in situ data, is −0.65 ± 0.39 m w.e. a−1for the 1980–2018 period. A significant correlation with annual precipitation (r= 0.77,p< 0.001) is observed, whereas there is no discernible correlation with summer mean air temperature. The results indicate the continuous mass loss of Trambau Glacier over the last four decades, which contrasts with the neighbouring Mera Glacier in balance.


1997 ◽  
Vol 43 (143) ◽  
pp. 131-137 ◽  
Author(s):  
C. Vincent ◽  
M. Vallon

AbstractGlacial mass-balance reconstruction for a long-term time-scale requires knowledge of the relation between climate change and mass-balance fluctuations. A large number of mass-balance reconstructions since the beginning of the century are based on statistical relations between monthly meteorological data and mass balance. The question examined in this paper is: are these relationships reliable enough for long-term time-scale extrapolation? From the glacier de Sarennes long mass-balance observations series, we were surprised to discover large discrepancies between relations resulting from different time periods. The importance of the albedo in relation to ablation and mass balance is highlighted, and it is shown that it is impossible to ignore glacier-surface conditions in establishing the empirical relation between mass-balance fluctuations and climatic variation; to omit this parameter leads to incorrect results for mass-balance reconstruction in the past based on meteorological data.


2017 ◽  
Vol 58 (75pt2) ◽  
pp. 119-129 ◽  
Author(s):  
Kathrin Naegeli ◽  
Matthias Huss

ABSTRACT Albedo is an important parameter in the energy balance of bare-ice surfaces and modulates glacier melt rates. The prolongation of the ablation period enforces the albedo feedback and highlights the need for profound knowledge on impacts of bare-ice albedo on glacier mass balance. In this study, we assess the mass balance sensitivity of 12 Swiss glaciers with abundant long-term in-situ data on changes in bare-ice albedo. We use pixel-based bare-ice albedo derived from Landsat 8. A distributed mass-balance model is applied to the period 1997–2016 and experiments are performed to assess the impact of albedo changes on glacier mass balance. Our results indicate that glacier-wide mass-balance sensitivities to changes in bare-ice albedo correlate strongly with mean annual mass balances (r 2 = 0.81). Large alpine glaciers react more sensitively to bare-ice albedo changes due to their ablation areas being situated at lower elevations. We find average sensitivities of glacier-wide mass balance of −0.14 m w.e. a−1 per 0.1 albedo decrease. Although this value is considerably smaller than sensitivity to air temperature change, we stress the importance of the enhanced albedo feedback that will be amplified due to atmospheric warming and a suspected darkening of glacier surface in the near future.


Sign in / Sign up

Export Citation Format

Share Document