scholarly journals The mass balance of McCall Glacier, Brooks Range, Alaska, U.S.A.; its regional relevance and implications for climate change in the Arctic

1998 ◽  
Vol 44 (147) ◽  
pp. 333-351 ◽  
Author(s):  
B.T. Rabus ◽  
K. A. Echelmeyer

AbstractMcCall Glacier has the only long-term mass-balance record in Arctic-Alaska. Average annual balances over the periods 1958–72 and 1972–93 were –15 and –33cm, respectively; recent annual balances (1993–96) are about –60 cm, and the mass-balance gradient has increased. For an Arctic glacier, with its low mass-exchange rate, this marks a significant negative trend.Recently acquired elevation profiles of McCall Glacier and ten other glaciers within a 30 km radius were compared with topographic maps made in 1956 or 1973. Most of these glaciers had average annual mass balances between –25 and –33 cm, while McCall Glacier averaged –28 cm for 1956–93, indicating that it is representative of the region. In contrast, changes in terminus position for the different glaciers vary markedly. Thus, mass-balance trends in this region cannot be estimated from fractional length changes at time-scales of a few decades.We developed a simple degree-day/accumulation mass-balance model for McCall Glacier. The model was tested using precipitation and radiosonde temperatures from weather stations at Inuvik, Canada, and Barrow, Kaktovik and Fairbanks, Alaska, and was calibrated with the measured balances. The Inuvik data reproduce all measured mass balances of McCall Glacier well and also reproduce the long-term trend towards more negative balances. Data from the other stations do not produce satisfactory model results. We speculate that the Arctic Front, oriented east–west in this region, causes the differences in model results.

1998 ◽  
Vol 44 (147) ◽  
pp. 333-351 ◽  
Author(s):  
B.T. Rabus ◽  
K. A. Echelmeyer

AbstractMcCall Glacier has the only long-term mass-balance record in Arctic-Alaska. Average annual balances over the periods 1958–72 and 1972–93 were –15 and –33cm, respectively; recent annual balances (1993–96) are about –60 cm, and the mass-balance gradient has increased. For an Arctic glacier, with its low mass-exchange rate, this marks a significant negative trend.Recently acquired elevation profiles of McCall Glacier and ten other glaciers within a 30 km radius were compared with topographic maps made in 1956 or 1973. Most of these glaciers had average annual mass balances between –25 and –33 cm, while McCall Glacier averaged –28 cm for 1956–93, indicating that it is representative of the region. In contrast, changes in terminus position for the different glaciers vary markedly. Thus, mass-balance trends in this region cannot be estimated from fractional length changes at time-scales of a few decades.We developed a simple degree-day/accumulation mass-balance model for McCall Glacier. The model was tested using precipitation and radiosonde temperatures from weather stations at Inuvik, Canada, and Barrow, Kaktovik and Fairbanks, Alaska, and was calibrated with the measured balances. The Inuvik data reproduce all measured mass balances of McCall Glacier well and also reproduce the long-term trend towards more negative balances. Data from the other stations do not produce satisfactory model results. We speculate that the Arctic Front, oriented east–west in this region, causes the differences in model results.


1999 ◽  
Vol 45 (151) ◽  
pp. 559-567 ◽  
Author(s):  
Rijan Bhakta Kayastha ◽  
Tetsuo Ohata ◽  
Yutaka Ageta

AbstractA mass-balance model based on the energy balance at the snow or ice surface is formulated, with particular attention paid to processes affecting absorption of radiation. The model is applied to a small glacier, Glacier AX010 in the Nepalese Himalaya, and tests of its mass-balance sensitivity to input and climatic parameters are carried out. Calculated and observed area-averaged mass balances of the glacier during summer 1978 (June-September) show good agreement, namely -0.44 and -0.46 m w.e., respectively.Results show the mass balance is strongly sensitive to snow or ice albedo, to the effects of screening by surrounding mountain walls, to areal variations in multiple reflection between clouds and the glacier surface, and to thin snow covers which alter the surface albedo. In tests of the sensitivity of the mass balance to seasonal values of climatic parameters, the mass balance is found to be strongly sensitive to summer air temperature and precipitation but only weakly sensitive to relative humidity.


1997 ◽  
Vol 24 ◽  
pp. 203-210 ◽  
Author(s):  
Kevin M. Fleming ◽  
Julian A. Dowdeswell ◽  
Johannes Oerlemans

An energy-balance model is used to calculate mass balance and equilibrium-line altitudes (ELAs) on two northwest Spitsbergen glaciers, Austre Brøggerbreen and Midre Lovénbreen, whose mass balances are at present negative, and for which greater than 20 year records of mass-balance data are available. The model takes meteorological data, ice-mass area distribution with altitude, and solar radiation as inputs. Modelling uses mean daily meteorological data from a nearby weather station, adjusted for altitude. Average net balances modelled for 1980–89 using models tuned to the decade’s average were –0.44 and –0.47 m w.e. for Lovénbreen and Brøggerbreen, respectively, compared with the measured averages of –0.27 and –0.36 m. Sensitivity tests on glacier response to greenhouse warming predict a net balance change of –0.61 m year–1 per °C temperature rise relative to today, and a rise in ELA of 90 m °C–1. Modelling of Little lee Age conditions in Spitsbergen suggests that a 0.6°C cooling or a precipitation increase of 23% would yield zero net mass balance for Lovénbreen and that further cooling would increase net balance by 0.30 m year–1 °C–1. Set in the context of similar modelling of southern Norwegian, Alpine and Greenland ice masses, these results support the suggestion that glaciers with a maritime influence (i.e. higher accumulation) are most sensitive to climate change, implying a gradient towards decreasing sensitivity as accumulation decreases eastward and with altitude in Svalbard.


2017 ◽  
Vol 26 (1) ◽  
Author(s):  
Zackary L. Hutchens ◽  
Brad N. Barlow ◽  
Alan Vasquez Soto ◽  
Dan E. Reichart ◽  
Josh B. Haislip ◽  
...  

AbstractCS 1246 is a hot subdwarf B star discovered in 2009 to exhibit a single, large-amplitude radial pulsation. An O-C diagram constructed from this mode revealed reflex motion due to the presence of a low-mass M dwarf, as well as a long-term trend consistent with a decrease in the pulsational period. The orbital reflex motion was later confirmed with radial velocity measurements. Using eight years of data collected with the Skynet Robotic Telescope Network, we show that the pulsation amplitude of CS 1246 is decaying nonlinearly. We also present an updated O-C diagram, which might now indicate a positive Ṗ and a new 2.09 ± 0.05 yr oscillation consistent with orbital reflex motion of the entire inner sdB+dM binary, possibly due to the gravitational influence of a circumbinary planet with minimum mass


2015 ◽  
Vol 9 (1) ◽  
pp. 1133-1175 ◽  
Author(s):  
J. Gabbi ◽  
M. Huss ◽  
A. Bauder ◽  
F. Cao ◽  
M. Schwikowski

Abstract. Light-absorbing impurities in snow and ice control glacier melt as shortwave radiation represents the main component of the surface energy balance. Here, we investigate the long-term effect of snow impurities, i.e. Saharan dust and black carbon (BC), on albedo and glacier mass balance. The analysis was performed over the period 1914–2014 for two sites on Claridenfirn, Swiss Alps, where an outstanding 100 year record of seasonal mass balance measurements is available. Information on atmospheric deposition of mineral dust and BC over the last century was retrieved from two firn/ice cores of high-alpine sites. A combined mass balance and snow/firn layer model was employed to assess the dust/BC-albedo feedback. Compared to pure snow conditions, the presence of Saharan dust and BC lowered the mean annual albedo by 0.04–0.06 and increased melt by 15–19% on average depending on the location on the glacier. BC clearly dominated absorption which is about three times higher than that of mineral dust. The upper site has experienced mainly positive mass balances and impurity layers were continuously buried whereas at the lower site, surface albedo was more strongly influenced by re-exposure of dust-enriched layers due to frequent years with negative mass balances.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1847 ◽  
Author(s):  
Fang Zou ◽  
Robert Tenzer ◽  
Hok Fok ◽  
Janet Nichol

The Greenland Ice Sheet (GrIS) is losing mass at a rate that represents a major contribution to global sea-level rise in recent decades. In this study, we use the Gravity Recovery and Climate Experiment (GRACE) data to retrieve the time series variations of the GrIS from April 2002 to June 2017. We also estimate the mass balance from the RACMO2.3 and ice discharge data in order to obtain a comparative analysis and cross-validation. A detailed analysis of long-term trend and seasonal and inter-annual changes in the GrIS is implemented by GRACE and surface mass balance (SMB) modeling. The results indicate a decrease of −267.77 ± 8.68 Gt/yr of the GrIS over the 16-year period. There is a rapid decline from 2002 to 2008, which accelerated from 2009 to 2012 before declining relatively slowly from 2013 to 2017. The mass change inland is significantly smaller than that detected along coastal regions, especially in the southeastern, southwestern, and northwestern regions. The mass balance estimates from GRACE and SMB minus ice discharge (SMB-D) are very consistent. The ice discharge manifests itself mostly as a long-term trend, whereas seasonal mass variations are largely attributed to surface mass processes. The GrIS mass changes are mostly attributed to mass loss during summer. Summer mass changes are highly correlated with climate changes.


2019 ◽  
Vol 65 (252) ◽  
pp. 605-616 ◽  
Author(s):  
SOJIRO SUNAKO ◽  
KOJI FUJITA ◽  
AKIKO SAKAI ◽  
RIJAN B. KAYASTHA

ABSTRACTWe conducted a mass-balance study of debris-free Trambau Glacier in the Rolwaling region, Nepal Himalaya, which is accessible to 6000 m a.s.l., to better understand mass-balance processes and the effect of precipitation on these processes on high-elevation Himalayan glaciers. Continuous in situ meteorological and mass-balance observations that spanned the three melt seasons from May 2016 are reported. An energy- and mass-balance model is also applied to evaluate its performance and sensitivity to various climatic conditions. Glacier-wide mass balances ranging from −0.34 ± 0.38 m w.e. in 2016 to −0.82 ± 0.53 m w.e. in 2017/18 are obtained by combining the observations with model results for the areas above the highest stake. The estimated long-term glacier mass balance, which is reconstructed using the ERA-Interim data calibrated with in situ data, is −0.65 ± 0.39 m w.e. a−1for the 1980–2018 period. A significant correlation with annual precipitation (r= 0.77,p< 0.001) is observed, whereas there is no discernible correlation with summer mean air temperature. The results indicate the continuous mass loss of Trambau Glacier over the last four decades, which contrasts with the neighbouring Mera Glacier in balance.


2007 ◽  
Vol 46 ◽  
pp. 283-290 ◽  
Author(s):  
Jing Zhang ◽  
Uma S. Bhatt ◽  
Wendell V. Tangborn ◽  
Craig S. Lingle

AbstractThe response of glaciers to changing climate is explored with an atmosphere/glacier hierarchical modeling approach, in which global simulations are downscaled with an Arctic MM5 regional model which provides temperature and precipitation inputs to a glacier mass-balance model. The mass balances of Hubbard and Bering Glaciers, south-central Alaska, USA, are simulated for October 1994–September 2004. The comparisons of the mass-balance simulations using dynamically-downscaled vs observed temperature and precipitation data are in reasonably good agreement, when calibration is used to minimize systematic biases in the MM5 downscalings. The responses of the Hubbard (a large tidewater glacier) and Bering (a large surge-type glacier) mass balances to the future climate scenario CCSM3 A1B, a ‘middle-of-the-road’ future climate in which fossil and non-fossil fuels are assumed to be used in balance, are also investigated for the period October 2010–September 2018. Hubbard and Bering Glaciers are projected to have increased accumulation, particularly on the upper glaciers, and greater ablation, particularly on the lower glaciers. The annual net balance for the entire Bering Glacier is projected to be significantly more negative, on average (–2.0ma–1w.e., compared to –1.3ma–1w.e. during the hindcast), and for the entire Hubbard Glacier somewhat less positive (0.3ma–1w.e. compared to 0.4 ma–1w.e. during the hindcast). The Hubbard Glacier mass balances include an estimated iceberg calving flux of 6.5 km3 a–1, which is assumed to remain constant.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lander Van Tricht ◽  
Chloë Marie Paice ◽  
Oleg Rybak ◽  
Rysbek Satylkanov ◽  
Victor Popovnin ◽  
...  

The mean specific mass balance of a glacier represents the direct link between a glacier and the local climate. Hence, it is intensively monitored throughout the world. In the Kyrgyz Tien Shan, glaciers are of crucial importance with regard to water supply for the surrounding areas. It is therefore essential to know how these glaciers behave due to climate change and how they will evolve in the future. In the Soviet era, multiple glaciological monitoring programs were initiated but these were abandoned in the nineties. Recently, they have been re-established on several glaciers. In this study, a reconstruction of the mean specific mass balance of Bordu, Kara-Batkak and Sary-Tor glaciers is obtained using a surface energy mass balance model. The model is driven by temperature and precipitation data acquired by combining multiple datasets from meteorological stations in the vicinity of the glaciers and tree rings in the Kyrgyz Tien Shan between 1750 and 2020. Multi-annual mass balance measurements integrated over elevation bands of 100 m between 2013 and 2020 are used for calibration. A comparison with WGMS data for the second half of the 20th century is performed for Kara-Batkak glacier. The cumulative mass balances are also compared with geodetic mass balances reconstructed for different time periods. Generally, we find a close agreement, indicating a high confidence in the created mass balance series. The last 20 years show a negative mean specific mass balance except for 2008–2009 when a slightly positive mass balance was found. This indicates that the glaciers are currently in imbalance with the present climatic conditions in the area. For the reconstruction back to 1750, this study specifically highlights that it is essential to adapt the glacier geometry since the end of the Little Ice Age in order to not over- or underestimate the mean specific mass balance. The datasets created can be used to get a better insight into how climate change affects glaciers in the Inner Tien Shan and to model the future evolution of these glaciers as well as other glaciers in the region.


2010 ◽  
Vol 65 (2) ◽  
pp. 80-91 ◽  
Author(s):  
M. Huss

Abstract. Half of the glaciers in the Swiss Alps are smaller than 0.1 km2. Despite this, the mass budget of small glaciers and their response to ongoing climate change is rarely studied. A new mass balance monitoring programme on Pizolgletscher (0.08 km2) in north-eastern Switzerland was started in 2006. This paper presents first results and describes a new approach to determining the mass balance of glaciers. Seasonal field observations are interpreted using a distributed mass balance model in daily resolution that allows spatial inter- and extrapolation of sparse data points and the calculation of mass balance over arbitrary time periods. Evaluation of aerial photographs acquired in subdecadal intervals since 1968 allows inclusion of data on changes in glacier area and ice volume, contributing towards a long-term reconstruction of Pizolgletscher's mass balance. The analysis revealed fast mass loss over the last three years with annual balances of -1.61 m w.e. in 2006/2007, -0.71 m w.e. in 2007/2008, and -1.46 m w.e. in 2008/2009 and high spatial variability of mass balance on Pizolgletscher.


Sign in / Sign up

Export Citation Format

Share Document