scholarly journals Glacier changes from a new inventory, Nianchu river basin, Tibetan Plateau

2009 ◽  
Vol 50 (53) ◽  
pp. 87-92 ◽  
Author(s):  
Caiping Zhou ◽  
Wenbin Yang ◽  
Liang Wu ◽  
Shiyin Liu

AbstractThe ice cover of the Nianchu river basin, southern Tibetan Plateau, was mapped for 2005, using a SPOT5 scene, and for 1990 and 2000 from Landsat TM/ETM. Digital elevation models (DEMs) were generated from 1 : 50 000 scale topographical maps. The results show that in 2005 there were 136 glaciers in this basin, with a total area of 224 km2. Of these, 37 glaciers had an area >1 km2 and 10 were larger than 5 km2; the average snout altitude was 5608m a.s.l. A comparison of outlines from the last 15 years shows that most glaciers have decreased in size; none have advanced. From 1990 to 2005, Xiaquepu glacier No. 56 and Shimozongpu glacier No. 38 retreated 310 and 560 m, respectively. The mean reduction in glacier surface area was 5% (10 a)–1 while the area of glacial lakes expanded by 10%; nine new lakes formed in this basin over the 15 year period. Because air temperatures here have been increasing, while precipitation has remained steady, glacier retreat is considered to be related to rising temperature.

2021 ◽  
Author(s):  
Andreas Linsbauer ◽  
Matthias Huss ◽  
Elias Hodel ◽  
Andreas Bauder ◽  
Mauro Fischer ◽  
...  

<p>With increasing anthropogenic greenhouse gas emissions and corresponding global warming, glaciers in Switzerland are shrinking rapidly as in many mountain ranges on Earth. Repeated glacier inventories are a key task to monitor such glacier changes and provide detailed information on the extent of glaciation, and important parameters such as area, elevation range, slope, aspect etc. for a given point or a period in time. Here we present the new Swiss Glacier Inventory (SGI2016) that has been acquired based on high-resolution aerial imagery and digital elevation models in cooperation with the Federal Office of Topography (swisstopo) and Glacier Monitoring in Switzerland (GLAMOS), bringing together topological and glaciological knowhow. We define the process, workflow and required glaciological adaptations to compile a highly accurate glacier inventory based on the digital Swiss topographic landscape model (swissTLM<sup>3D</sup>).</p><p>The SGI2016 provides glacier outlines (areas), supraglacial debris cover, ice divides and location points of all glaciers in Switzerland referring to the years 2013-2018, whereas most of the glacier outlines have been mapped based on aerial images acquired between 2015-2017 (75% in number and 87% in area), with the centre year 2016. The SGI2016 maps 1400 individual glacier entities with a total glacier surface area of 961 km<sup>2</sup> (whereof 11% / 104 km<sup>2</sup> are debris-covered) and constitutes the so far most detailed cartographic representation of glacier extent in Switzerland. Analysing the dependencies between topographic parameters and debris-cover fraction on the basis of individual glaciers reveals that short glaciers with a moderate mean slope and glaciers with a low median elevation tend to have high debris fractions. A change assessment between the SGI1973 and SGI2016 based on individual glacier entities affirms the largest relative area changes for small glaciers and for low-elevation glaciers, whereas the largest glaciers show small relative area changes, though large absolute changes. The analysis further indicates a tendency for glaciers with a high share of supraglacial debris to show larger relative area changes.</p><p>Despite of an observed strong glacier volume loss between 2010 and 2016, the total glacier surface area of the SGI2016 is somewhat larger than reported in the last Swiss glacier inventory SGI2010. Even though both inventories were created based on swisstopo aerial photographs, the additional data, tools, resources and methodologies used by the professional cartographers digitizing glacier outlines in 3D for the SGI2016, are able to explain the counter-intuitive difference between SGI2010 and SGI2016. A direct comparison of these two datasets is thus not meaningful, but an experiment where a representative glacier sample of the SGI2010 was re-assessed based on the approaches of the SGI2016 led to an upscaled total glacier surface area of 1010 km<sup>2</sup> for the Swiss Alps around 2010. This indicates an area loss of 49 km<sup>2</sup> between the two last Swiss glacier inventories. As swisstopo data products are and will be regularly updated, the SGI2016 is the first step towards a consistent and accurate data product of repeated glacier inventories in six-year time intervals that promises a high comparability for individual glaciers and glacier samples.</p>


2016 ◽  
Vol 62 (231) ◽  
pp. 94-102 ◽  
Author(s):  
IULIAN-HORIA HOLOBÂCĂ

The glacier system covering Europe's highest mountain, Elbrus, has exhibited an accelerated retreat since 1980. Some studies have related this retreat to a significant summer temperature increasing trend. Relief- and aspect-related parameters for the glacierized area have an important impact on glacier changes. In this paper, the changes in glacier area are identified, quantified and correlated with relief parameters for the period 1985–2007. Spatial analysis was performed using the GLAM-CD (Glacier Mapper – Change Detector) algorithm. The input data for this algorithm were Landsat 5 images, the Aster Global Digital Elevation and the glacier outlines from the GLIMS project (Global Land Ice Measurements from Space). Regression analyses between glacier area losses and relief-related parameters indicate a significant positive relation with the altitude and a significant negative relation with the glacier surface area. In this context, we used a correlated component regression to model these relations. The model explains >50% of the total variation.


2016 ◽  
Vol 10 (3) ◽  
pp. 1317-1329 ◽  
Author(s):  
Jakub Małecki

Abstract. Svalbard is a heavily glacier-covered archipelago in the Arctic. Dickson Land (DL), in the central part of the largest island, Spitsbergen, is relatively arid and, as a result, glaciers there are relatively small and restricted mostly to valleys and cirques. This study presents a comprehensive analysis of glacier changes in DL based on inventories compiled from topographic maps and digital elevation models for the Little Ice Age (LIA) maximum, the 1960s, 1990, and 2009/2011. Total glacier area has decreased by  ∼ 38 % since the LIA maximum, and front retreat increased over the study period. Recently, most of the local glaciers have been consistently thinning in all elevation bands, in contrast to larger Svalbard ice masses which remain closer to balance. The mean 1990–2009/2011 geodetic mass balance of glaciers in DL is among the most negative from the Svalbard regional means known from the literature.


2003 ◽  
Vol 49 (167) ◽  
pp. 539-546 ◽  
Author(s):  
Yang Jianping ◽  
Ding Yongjian ◽  
Chen Rensheng ◽  
Liu Shiyin ◽  
Lu Anxin

AbstractGlaciers are an important element of the environment in the source regions of the Yangtze and Yellow rivers on the Tibetan Plateau. Using Geographical Information System techniques, we have studied changes in the location of glacier margins in two areas: the Geladandong area in the headwaters of the Yangtze, and the A’nyêmaqên Shan mountains in the headwaters of the Yellow River. Marginal positions during the Little Ice Age (LIA) maximum, in 1969 in the Geladandong area, in 1966 in the A’nyêmaqên Shan, and in 2000 in both areas, were determined using aerial photographs, satellite images, topographical maps and digital elevation models. Extrapolating the results to the entire source regions of the Yangtze and Yellow rivers, we estimate that the total glacierized area decreased about 1.7% between 1969 and 2000 in the Geladandong area and about 17% between 1966 and 2000 in the A’nyêmaqên Shan. Glaciers were stable or advanced slightly between 1969 and 1995 in the Geladandong area, and between 1966 and 1981 in the A’nyêmaqên Shan, but have retreated since the mid-1990s in the former and since the 1980s in the latter. Significant increases in summer air temperature and decreases in annual precipitation are the causes of the present retreat. As a consequence of the retreat, water storage, as ice, in the Yangtze and Yellow river drainages is decreasing by 65–70 × 106 m3 a−1.


2021 ◽  
Vol 9 ◽  
Author(s):  
Alexis Caro ◽  
Thomas Condom ◽  
Antoine Rabatel

Over the last decades, glaciers across the Andes have been strongly affected by a loss of mass and surface areas. This increases risks of water scarcity for the Andean population and ecosystems. However, the factors controlling glacier changes in terms of surface area and mass loss remain poorly documented at watershed scale across the Andes. Using machine learning methods (Least Absolute Shrinkage and Selection Operator, known as LASSO), we explored climatic and morphometric variables that explain the spatial variance of glacier surface area variations in 35 watersheds (1980–2019), and of glacier mass balances in 110 watersheds (2000–2018), with data from 2,500 to 21,000 glaciers, respectively, distributed between 8 and 55°S in the Andes. Based on these results and by applying the Partitioning Around Medoids (PAM) algorithm we identified new glacier clusters. Overall, spatial variability of climatic variables presents a higher explanatory power than morphometric variables with regards to spatial variance of glacier changes. Specifically, the spatial variability of precipitation dominates spatial variance of glacier changes from the Outer Tropics to the Dry Andes (8–37°S) explaining between 49 and 93% of variances, whereas across the Wet Andes (40–55°S) the spatial variability of temperature is the most important climatic variable and explains between 29 and 73% of glacier changes spatial variance. However, morphometric variables such as glacier surface area show a high explanatory power for spatial variance of glacier mass loss in some watersheds (e.g., Achacachi with r2 = 0.6 in the Outer Tropics, Río del Carmen with r2 = 0.7 in the Dry Andes). Then, we identified a new spatial framework for hydro-glaciological analysis composed of 12 glaciological zones, derived from a clustering analysis, which includes 274 watersheds containing 32,000 glaciers. These new zones better take into account different seasonal climate and morphometric characteristics of glacier diversity. Our study shows that the exploration of variables that control glacier changes, as well as the new glaciological zones calculated based on these variables, would be very useful for analyzing hydro-glaciological modelling results across the Andes (8–55°S).


2018 ◽  
Vol 64 (243) ◽  
pp. 132-147 ◽  
Author(s):  
HONGBO ZHANG ◽  
FAN ZHANG ◽  
GUOQING ZHANG ◽  
YAOMING MA ◽  
KUN YANG ◽  
...  

ABSTRACTThe MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data have been widely used for air temperature estimation in mountainous regions where station observations are sparse. However, the performance of MODIS LST in high-elevation glacierized areas remains unclear. This study investigates air temperature estimation in glacierized areas based on ground observations at four glaciers across the Tibetan Plateau. Before being used to estimate the air temperature, MODIS LST data are evaluated at two of the glaciers, which indicates that MODIS night-time LST is more reliable than MODIS daytime LST data. Then, linear models based on each of the individual MODIS LST products from two platforms (Terra and Aqua) and two overpasses (night-time and daytime) are built to estimate daily mean, minimum and maximum air temperatures in glacierized areas. Regional glacier surface (RGS) models (mean /-mean-square differences: 3.3, 3.0 and 4.8°C for daily mean, minimum and maximum air temperatures, respectively) show higher accuracy than local non-glacier surface models (mean root-mean-square differences: 4.2, 4.7 and 5.7°C). In addition, the RGS models based on MODIS night-time LST perform better to estimate daily mean, minimum and maximum air temperatures than using temperature lapse rate derived from local stations.


2005 ◽  
Vol 51 (175) ◽  
pp. 607-610 ◽  
Author(s):  
Rui Jin ◽  
Xin Li ◽  
Tao Che ◽  
Lizong Wu ◽  
Pradeep Mool

AbstractGlacier area changes in the Pumqu river basin, Tibetan Plateau, between the 1970s and 2001 are analyzed, based on the Chinese Glacier Inventory and ASTER images. A new glacier inventory is obtained by visually interpreting the remote-sensing images and the digital elevation model. By comparing the two inventories, glacier area changes over the past 30 years are revealed. The results show that the area loss is about 9.0% and the shrinkage trend continues according to the meteorological data.


2020 ◽  
Vol 93 (1) ◽  
pp. 69-88 ◽  
Author(s):  
Janusz Godziek ◽  
Bartłomiej Szypuła

Forests in the Carpathians are increasing their range mainly due to the expansion in former agricultural areas. In this study conducted for two valleys (88 and 69 km2 ) topographical maps from 18th to 20th century and an orthophotomap were used in order to determine the durability of forest cover. This durability is understood as the period of time during which a given area was presumably occupied by forest. A digital elevation model (DEM) and a digital surface model (DSM) of 1x1m resolution were applied to investigate the relationship between forest cover durability and altitude, slope, aspect and the mean height of trees. The variety of spatial structure of forest cover durability results mainly from the differences of the examined valleys accessibility. Positive correlation between forest cover durability and the mean height of trees and altitude found for both valleys. A directly proportional relationship between forest cover durability and slopes also occurs in the Solinka Valley.


Sign in / Sign up

Export Citation Format

Share Document