scholarly journals The Impact of surface perturbations on snow-slope stability

1998 ◽  
Vol 26 ◽  
pp. 307-312 ◽  
Author(s):  
H. Conway

Measurements and observations by others indicate that a potential slab avalanche consists of a relatively cohesive slab of snow overlying a thin weak layer that coniains flaws where locally the shear stress from the overburden is not fully supported. Under favorable conditions, snow will shear strain-soften, which provides the basis for applying a slip-weakening model to examine the size of flaw needed to initiate sub-critical crack propagation along the weak layer. Using typical values for snow properties, the model predicts sub-critical crack growth can initiate from a relatively small flaw well before the shear stress from the overburden approaches the peak shear strength at tin-bed. The occurrence of small flaws or imperfections in the basal layer would explain field measurements which usually indicate that avalanching occurs before the applied shear stress exceeds the shear strength at the basal layer.Widespread slab-avalanche activity often increases significantly soon after the onset of rain on new snow. Measurements of temperature and mechanical properties show that only the upper 0.15 m or less of the slab has been altered at the time of avalanching; alterations at the sliding layer have not yet been detected. Results from the slip-weakening model indicate that the rain-induced alterations would reduce the size of flaw needed to initiate sub-critical crack growth by 10–20%. The observations and model results show clearly the importance of the slab properties; it is evident that both the slab and the weak layer act together to control slope stability. A further implication is that the stability of freshly deposited snow is often close to critical, because a relatively small surface perturbation is often sufficient to cause avalanching. This is not surprising, because it is well known from field observations that new snow on slopes should be treated with caution.

1998 ◽  
Vol 26 ◽  
pp. 307-312 ◽  
Author(s):  
H. Conway

Measurements and observations by others indicate that a potential slab avalanche consists of a relatively cohesive slab of snow overlying a thin weak layer that coniains flaws where locally the shear stress from the overburden is not fully supported. Under favorable conditions, snow will shear strain-soften, which provides the basis for applying a slip-weakening model to examine the size of flaw needed to initiate sub-critical crack propagation along the weak layer. Using typical values for snow properties, the model predicts sub-critical crack growth can initiate from a relatively small flaw well before the shear stress from the overburden approaches the peak shear strength at tin-bed. The occurrence of small flaws or imperfections in the basal layer would explain field measurements which usually indicate that avalanching occurs before the applied shear stress exceeds the shear strength at the basal layer.Widespread slab-avalanche activity often increases significantly soon after the onset of rain on new snow. Measurements of temperature and mechanical properties show that only the upper 0.15 m or less of the slab has been altered at the time of avalanching; alterations at the sliding layer have not yet been detected. Results from the slip-weakening model indicate that the rain-induced alterations would reduce the size of flaw needed to initiate sub-critical crack growth by 10–20%. The observations and model results show clearly the importance of the slab properties; it is evident that both the slab and the weak layer act together to control slope stability. A further implication is that the stability of freshly deposited snow is often close to critical, because a relatively small surface perturbation is often sufficient to cause avalanching. This is not surprising, because it is well known from field observations that new snow on slopes should be treated with caution.


2015 ◽  
Vol 2 ◽  
pp. 1
Author(s):  
Zhaohong Ji

<p>The stress route analytical method compensates for the limitation of traditional soil slope stability analytical method. Since it disregards the impact of effective stress route on the stress status and anti-shear strength of soil slope, it maps out the soil stress route drawing in the excavation process, and marks the anti-shear strength and shear stress changes under various conditions of soil. It causes the changes of the safety coefficient rules in the excavation of soil slope and affects the excavation stability of soil cutting and side slope. The result reveals: (1) The main analytical method of side slope stability which covers both the limit balance method and finite unit method fails to consider the impact of effective stress route on the existing stress status and anti-shear strength of soil slope; the stress route analytical method is able to overcome this limitation to a certain degree. (2) The stress route theory is adopted for analysis, in which, it can projected the whole stress of typical and most dangerous area of the slope, able to analyse the anti-shear strength of soil in a real-time manner, manage to express the safety coefficient changes in the stress route drawing and provides a selection of a suitable excavation plan by contrast. (3) In the overall excavation, the slope toe suffers from obvious stress concentration which expands to the surrounding areas and inconvenient for the side slope stability in the excavation.</p>


2019 ◽  
Vol 98 ◽  
pp. 05005 ◽  
Author(s):  
Natalia Brakorenko ◽  
Anna Leonova ◽  
Aleksey Nikitenkov

We investigate in this article the impact of soil water saturation on the slope stability, using a site in Tomsk city as a case study. The dependency of the shear strength parameters of soil on the degree of soil water saturation has been demonstrated. The paper also provides equations for the calculation of slope stability coefficient under different values of soil water saturation.


2020 ◽  
Vol 6 (1) ◽  
pp. 164-173 ◽  
Author(s):  
F. Kassou ◽  
J. Ben Bouziyane ◽  
A. Ghafiri ◽  
A. Sabihi

The overloads of structures or embankments built on clayey soft ground are generally applied gradually, respecting a specific phasing. This phasing on construction allows the undrained shear strength of clay increasing over consolidation in order to avoid the risk of collapse during loading. In this work, the undrained shear strength of clay over the consolidation was estimated following SHANSEP method of which parameters proposed by eight researchers have been employed, as well as the slope stability analysis of embankments on soft soils during staged construction. Assessment of factor of safety for slope stability was conducted basing on the Bishop method. Additionally, the variations of undrained shear strength and factor of safety were presented. In order to validate the methods discussed in this study, slope stability analysis of five embankments constructed on clayey soft soils improved by the vertical drain technique in a high-speed railway construction project in Morocco was performed. For these embankments, field measurements about lateral displacement are presented.  It was found that some of the adopted methods is in a good agreement with field measurements. Hence, generalization of these methods to many soft ground cases can be proposed.


Author(s):  
Shalaho Dina Devy ◽  
Pretty Permatasari Hutahayan

The stability of open pit slopes in Biangan district, West Kutai Regency, East Kalimantan Province, is greatly influenced by groundwater conditions. The existence of groundwater reduces the shear strength of the materials which causes a decrease in the stability value of pit slopes. The main objective of this study is to assess the impact of groundwater on the stability of the low wall and high wall pit mining. Groundwater modeling is used to determine the prediction of groundwater level on the pit slope which determines the value of the slope stability. Slope stability analysis in this study was performed using the Finite Element Method, producing output in the form of strain zones, deformation and displacement values. Therefore, the Strength Reduction Factor (SRF) approach was used, which is a gradual reduction of shear strength until the values of cohesion and friction angles reach minimums and the slopes are at a critical state. Groundwater modeling results indicate that groundwater flows to the Biangan river with hydraulic heads between 76 and 108 meters above sea level. Based on the analysis using the Finite Element Method, the stability values of the pit slopes, which are influenced by groundwater, are 0.65 on the low wall and 1.40 on the high wall. The total displacements are 0.019 meters on the low wall and 0.002 meters on the high wall.  The impact of groundwater on the slope is an increase in the slope load. This increases the materials’ thrust and reduces the shear strength of the materials which reduces the rock mass that can function as a water seepage path. Thus, the recommendation for low wall pit construction is a safety factor of 7.79 with a total displacement of 0.020 meters.


2021 ◽  
Vol 11 (10) ◽  
pp. 4568
Author(s):  
Muhammad Israr Khan ◽  
Shuhong Wang

Assessment and analysis of soil slope stability is an important part of geotechnical engineering at all times. This paper examines the assessment of soil slope stability in fine-grained soils. The effect of change in shear strength (τ), shear stress (σ) and slope angle (β) on the factor of safety has been studied. It correlates shear strength with slope angle and shear stress by considering the horizontal seismic coefficients in both saturated and unsaturated conditions. The slope failure surface was considered a circular slip surface. Statistical package for social sciences (SPSS) and Slide, numerical modeling software and limit equilibrium slope stability analysis software, respectively, are used to find out the correlations between the three basic parameters. The slope angle varied from 70 to 88 degrees, which are the most critical values for slope angles, and a total of 200 analyses were performed. τ, β and σ are correlated, and the correlations are provided in the results section. The results indicate that the correlations developed between the parameters have a very close relationship. The applicability of the developed equations is above 99%. These correlations are applicable in any type of soil slope stability analysis, where the value of shear strength and factor of safety is required with the variation of slope angle and shear stress.


2013 ◽  
Vol 58 (2) ◽  
pp. 449-463 ◽  
Author(s):  
Mieczysław Żyła ◽  
Agnieszka Dudzińska ◽  
Janusz Cygankiewicz

Ethane constitutes an explosive gas. It most often accompanies methane realizing during exploitation and mining works. In this paper the results of ethane sorption have been discussed on three grain classes of six selected hard coal samples collected from active Polish coalmines. On the basis of obtained results, it has been stated that the tested hard coals prove differentiated sorption power with reference to ethane. Te extreme amount of ethane is sorbed by low carbonized hard coal from “Jaworzno” coalmine. This sort of coal shows great porosity, and great content of oxygen and moisture. The least amount of ethane is sorbed by hard coal from “Sośnica” coalmine. This sort of coal possesses relatively a great deal of ash contents. Together with the process of coal disintegration, the amount of sorbed ethane increases for all tested coal samples. Between tested coals there are three medium carbonized samples collected from “Pniówek”, “Chwałowice” “Zofiówka” coalmines which are characterized by small surface values counted according to model BET from nitrogen sorption isotherms determined at the temperature of 77.5 K. The samples of these three coals prove the highest, from between tested coals, increase of ethane sorption occurring together with their disintegration. These samples disintegrated to 0,063-0,075 mm grain class sorb ethane in the amount corresponding with the sorption quantity of low carbonized coal from “Jaworzno” coalmine in 0.5-0.7 mm grain class. It should be marked that the low carbonized samples collected from “Jaworzno” and Wesoła” coalmines possess large specific surface and great porosity and belong to coal group of “loose” spatial structure. Regarding profusion of sorbed ethane on disintegrated medium carbonized samples from “Pniówek”, “Zofiówka”, “Chwałowice” coalmines it can be supposed that in the process of coal disintegration, breaking their “compact’ structure occurs. Loosened structure of medium carbonized coals results in increasing accessibility of ethane particles to sorption centres both electron donors and electron acceptors which are present on hard coal surface. The surface sorption centre increase may result in formation a compact layer of ethane particles on coal surface. In the formed layer, not only the strengths of vertical binding of ethane particles with the coal surface appear but also the impact of horizontal strengths appears which forms a compact layer of sorbed ethane particles. The surface layer of ethane particles may lead to explosion.


2012 ◽  
Vol 204-208 ◽  
pp. 241-245
Author(s):  
Yang Jin

The stability of soil slope under seepage is calculated and analyzed by using finite element method based on the technique of shear strength reduction. When the condition of seepage or not is considered respectively, the critical failure state of slopes and corresponding safety coefficients can be determined by the numerical analysis and calculation. Besides, through analyzing and comparing the calculation results, it shows that seepage has a negative impact on slope stability.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 959
Author(s):  
Benjamin Clark ◽  
Ruth DeFries ◽  
Jagdish Krishnaswamy

As part of its nationally determined contributions as well as national forest policy goals, India plans to boost tree cover to 33% of its land area. Land currently under other uses will require tree-plantations or reforestation to achieve this goal. This paper examines the effects of converting cropland to tree or forest cover in the Central India Highlands (CIH). The paper examines the impact of increased forest cover on groundwater infiltration and recharge, which are essential for sustainable Rabi (winter, non-monsoon) season irrigation and agricultural production. Field measurements of saturated hydraulic conductivity (Kfs) linked to hydrological modeling estimate increased forest cover impact on the CIH hydrology. Kfs tests in 118 sites demonstrate a significant land cover effect, with forest cover having a higher Kfs of 20.2 mm hr−1 than croplands (6.7mm hr−1). The spatial processes in hydrology (SPHY) model simulated forest cover from 2% to 75% and showed that each basin reacts differently, depending on the amount of agriculture under paddy. Paddy agriculture can compensate for low infiltration through increased depression storage, allowing for continuous infiltration and groundwater recharge. Expanding forest cover to 33% in the CIH would reduce groundwater recharge by 7.94 mm (−1%) when converting the average cropland and increase it by 15.38 mm (3%) if reforestation is conducted on non-paddy agriculture. Intermediate forest cover shows however shows potential for increase in net benefits.


Sign in / Sign up

Export Citation Format

Share Document