scholarly journals Investigation of tribological characteristics of brake pairs elements of mobile machine

2021 ◽  
Vol 101 (3) ◽  
pp. 26-30
Author(s):  
V. Jankauskas ◽  
D. Kairiūnas

The subject of the experiments was the tribological properties of typical brake pads and disc characteristics. For the experiment was used Grey Cast Iron brake disc and semi metallic, low steel quantity and ceramic brake pads. The breaking process was imitated. The experiment was conducted at 0.75, 1.25 and 1.76 m/s sliding speed using 0.85 MPa contact pressure. The experiments lasted 10 minutes. The results of the experiments showed that best tribological characteristics have ceramic brake pads, despite the fact that brake disc temperature rapidly increase the with ceramic brake pads, but the friction coefficient (and braking torque) was the best. Semi metallic and low steel braking pads had very similar friction coefficient values, but wear and disc temperature values were more dissimila

Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 621 ◽  
Author(s):  
Senad Dizdar ◽  
Yezhe Lyu ◽  
Conny Lampa ◽  
Ulf Olofsson

Airborne wear particle emission has been investigated in a pin-on-disc tribometer equipped with particle analysis equipment. The pins are cut out from commercial powder metallurgy automotive brake pads as with and without copper content. The discs are cut out from a commercial grey cast iron automotive brake disc as cut out and as in addition to a laser cladded with a powder mix of Ni-self fluxing alloy + 60% spheroidized fused tungsten carbide and then fine-ground. Dry sliding wear testing runs under a contact pressure of 0.6 MPa, sliding velocity of 2 m/s and a total sliding distance of 14,400 m. The test results show both wear and particle emission improvement by using laser cladded discs. The laser cladded discs in comparison to the reference grey cast iron discs do not alter pin wear substantially but achieves halved mass loss and quartered specific wear. Comparing in the same way, the friction coefficient increases from 0.5 to 0.6, and the particle number concentration decreases from over 100 to some 70 (1/cm3) and the partition of particles below 7 µm is approximately halved.


Tribologia ◽  
2017 ◽  
Vol 276 (6) ◽  
pp. 33-37
Author(s):  
Grzegorz KINAL ◽  
Marta PACZKOWSKA

This article deals with the one of the most important elements of modern braking systems, which is a brake disc. A brake disc is the one of more stressed parts of the braking system, and its quality and design largely determine the braking performance of the vehicle. The article describes the technology of manufacturing disc brake pads that is important from the point of view of the wear processes occurring between two friction surfaces: the brake disc and the brake pad lining. The research of the cast iron ventilated brake disc surface measured the values of the selected roughness parameters at this site. In the context of measurements, it was also determined to be able to maintain a certain value of selected geometric parameters at a given location for the group of brake discs tested of a specific type and manufactured by a particular manufacturer. The work was carried out in the aspect of the research to create a surface layer to protect the brake discs from the effects of corrosive wear.


2017 ◽  
Vol 17 (3) ◽  
pp. 125-134 ◽  
Author(s):  
Wojciech Sawczuk

AbstractDue to their wide range of friction characteristics resulting from the application of different friction materials and good heat dissipation conditions, railway disc brakes have long replaced block brakes in many rail vehicles. A block brake still remains in use, however, in low speed cargo trains. The paper presents the assessment of the braking process through the analysis of vibrations generated by the components of the brake system during braking. It presents a possibility of a wider application of vibroacoustic diagnostics (VA), which aside from the assessment of technical conditions (wear of brake pads) also enables the determination of the changes of the average friction coefficient as a function of the braking onset speed. Vibration signals of XYZ were measured and analyzed. The analysis of the results has shown that there is a relation between the values of the point measures and the wear of the brake pads.


Author(s):  
Anil Babu Seelam ◽  
Nabil Ahmed Zakir Hussain ◽  
Sachidananda Hassan Krishanmurthy

Brakes are the most important component of any automobile. Brakes provide the ability to reduce or bring automobile to a complete stop. The process of braking is usually achieved by applying pressure to the brake discs. The main objective of this research paper is to propose an appropriate design and to perform analysis of a suitable brake rotor to enhance the performance of the high-speed car. The design of the brake disc is modelled using Solid works and the analysis is carried out using Ansys software. The analysis has been conducted by considering stainless steel and grey cast iron using same brake rotor design so that optimal choice of brake disc can be considered. The analysis considered involves static structural analysis and steady state thermal analysis considering specific parameters on brake rotor to increase the life of brake rotor. From the analysis it is found that the performance and life of disc brake depends upon heat dissipation. From the analysis results it can be concluded that grey cast iron has performed better as compared to stainless steel as this material has anti-fade properties which improves the life of the brake rotor.


2016 ◽  
Vol 16 (3) ◽  
pp. 95-98
Author(s):  
J. Piątkowski ◽  
R. Wieszała ◽  
A. Gontarczyk

Abstract The paper presents tribological properties of A390.0 (AlSi17Cu5Mg) alloy coupled in abrasive action with EN-GJL-350 grey cast-iron. The silumin was prepared with the use of two different technologies which differed in terms of cooling speed. In the first case the alloy was modified with foundry alloy CuP10 and cast to a standard tester ATD and in case of second option the modified alloy was cast into steel casting die. Due to different speed of heat removal the silumins varied in structure, particularly with size of primary crystals of silicon and their distribution in matrix which had a significant influence of friction coefficient in conditions of dry friction.


2019 ◽  
Vol 805 ◽  
pp. 8-12
Author(s):  
Md Salim Kamil ◽  
Fauzuddin Ayob ◽  
Asmawi Ismail ◽  
Bakhtiar Ariff Baharudin ◽  
Azman Ismail

This Paper presents the study on the weldability of two similar and two different metallic materials. The weldability of the similar metallic materials considered in the study were aluminum alloy pipes of grade AA6063. As for the weldability of two different metallic materials were aluminum alloy of grade AA6061 to low carbon steel of grade A36, dupl stainless steel of grade 2205 to low carbon steel of grade A36 and grey cast iron of grade A48 class 35 to low carbon steel BS 449 of grade 250. The differing methods of welding or joining processes are discussed herein including those of stir welding and hot pressed diffusion bonding of the similar and dissimilar metallic materials respectively as mentioned above. The weldability of between the two materials are investigated including the physical appearance of the joints and the strength integrity of those so far achieved at this stage. The paper also presented the results on the weldability of the similar and different metallic materials, recommendation for further in-depth study in pursuit for improved technologies on the subject matters and highlight the prospects of metallic materials welding or bonding or joining to fulfill the demands for different applications.


Author(s):  
Nicholas Athanassiou ◽  
Ulf Olofsson ◽  
Jens Wahlström ◽  
Senad Dizdar

Disc brakes wear during braking events and release airborne particulates. These particle emissions are currently one of the highest contributors to non-exhaust particle emissions and introduce health hazards as well as environmental contamination. To reduce this problem, wear and corrosion-resistant disc coatings have been implemented on grey cast iron brake disc rotors by using various deposition techniques such as thermal spraying and overlay welding. High thermal gradients during braking introduce risks of flaking off and cracking of thermally sprayed coatings with adhesive bonding to the substrate. Overlay welding by laser cladding offers metallurgical bonding of the coating to the substrate and other benefits that motivate laser cladding as a candidate for the coating of the grey cast iron brake discs. This study aims to investigate the effect of laser cladding on the thermal and thermo-structural performance of the coated grey cast iron brake discs. Therefore, thermal and thermo-stress analysis with COMSOL Multiphysics 5.6 software is performed on braking events of grey cast iron brake discs as non-coated – reference and laser cladding coated with stainless steel welding consumables. The Results demonstrated that surface temperatures were more localised, overall higher in the laser cladded coating with over three times the stresses attained of reference grey cast iron discs. The output of the simulations has been compared by tests found in the literature. Laser cladding presented higher reliability and braking performance, nonetheless requiring the evaluation of its thermal impact on other system components.


2008 ◽  
Vol 15 (05) ◽  
pp. 625-633 ◽  
Author(s):  
K. W. LIEW ◽  
N. S. M. EL-TAYEB

This work aims to investigate the effect of two different counterdisc materials, i.e. gray cast iron (GCI) and ductile gray cast iron (DGCI) on tribo behavior of non-commercial frictional materials (NF1, NF2, NF4, and NF5) and two other chosen commercial brake pads (CMA and CMB) under dry sliding contact conditions. The four non-commercial frictional materials were fabricated with various percentages of phenolic binder resin (15 and 20 vol.%) and reinforced with steel fibers (15 and 20 vol.%) using hot press molding methods. Tribo tests were carried out using a small-scale tribo-tester of pad-on-disc type. Friction coefficient and wear of non-commercial and commercial brake pads were measured against each counterdisc (GCI and DGCI) and compared. Then, the friction and wear characteristic are discussed by comparing the experimental results obtained for each kind of cast iron. The results showed that maximum friction coefficient (0.4–0.5) of brake pad was attained at 2.22 MPa applied pressure and 2.1 m/s sliding speed when the frictional brake pad materials were tested against DGCI disc rotor. Meanwhile, similar wear rates for all frictional brake pad materials were sustained at higher applied pressure and sliding speed when tested against either type of rotor discs (GCI and DGCI). The results on the other hand, indicated that non-commercial materials NF1 and NF4, gave better wear resistance compared to other frictional pad materials. NF2 exhibited the lowest wear resistance when tested against GCI and DGCI rotor disc at all applied pressure and sliding speeds. The latter result is referred to the low percentage binder resin in the friction material NF2.


2015 ◽  
Vol 15 (2) ◽  
pp. 13-16 ◽  
Author(s):  
Š. Eperješi ◽  
J. Malik ◽  
I. Vasková ◽  
D. Fecko

Abstract Grey cast iron belongs to materials for casting production, which have wide application for different industry branches. Wide spectrum of properties of these materials is given by the structure of base metal matrix, which can be influenced with heat treatment. Processes of annealing can be applied for grey cast iron without problems. During heat treatment processes, where higher cooling rates are used, the thermal and structural strains become important. Usage and conditions of such heat treatment for grey cast iron castings of common production are the subject of evaluation of this article.


Sign in / Sign up

Export Citation Format

Share Document