Laboratory Studies of Water Ice Nucleation and Growth at Conditions Relevant to Martian Cloud Formation

2011 ◽  
Author(s):  
Brendan Douglas Mar
Icarus ◽  
2010 ◽  
Vol 210 (2) ◽  
pp. 985-991 ◽  
Author(s):  
Laura T. Iraci ◽  
Bruce D. Phebus ◽  
Bradley M. Stone ◽  
Anthony Colaprete

2015 ◽  
Vol 15 (4) ◽  
pp. 1621-1632 ◽  
Author(s):  
E. S. Thomson ◽  
X. Kong ◽  
P. Papagiannakopoulos ◽  
J. B. C. Pettersson

Abstract. The environmental chamber of a molecular beam apparatus is used to study deposition nucleation of ice on graphite, alcohols and acetic and nitric acids at temperatures between 155 and 200 K. The critical supersaturations necessary to spontaneously nucleate water ice on six different substrate materials are observed to occur at higher supersaturations than are theoretically predicted. This contradictory result motivates more careful examination of the experimental conditions and the underlying basis of the current theories. An analysis based on classical nucleation theory supports the view that at these temperatures nucleation is primarily controlled by the rarification of the vapor and the strength of water's interaction with the substrate surface. The technique enables a careful probing of the underlying processes of ice nucleation and the substrate materials of study. The findings are relevant to atmospheric nucleation processes that are intrinsically linked to cold cloud formation and lifetime.


2019 ◽  
Vol 21 (35) ◽  
pp. 19585-19593 ◽  
Author(s):  
Ryutaro Souda ◽  
Takashi Aizawa

Nucleation and growth processes of water ice on Ni(111) and how they are influenced by O and CO adspecies and electron irradiation are explored based on RHEED images.


2017 ◽  
Vol 200 ◽  
pp. 165-194 ◽  
Author(s):  
Joseph C. Charnawskas ◽  
Peter A. Alpert ◽  
Andrew T. Lambe ◽  
Thomas Berkemeier ◽  
Rachel E. O’Brien ◽  
...  

Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA–soot biogenic–anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core–shell configuration (i.e.a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respectiveTgand FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.


2017 ◽  
Vol 17 (7) ◽  
pp. 4817-4835 ◽  
Author(s):  
Jann Schrod ◽  
Daniel Weber ◽  
Jaqueline Drücke ◽  
Christos Keleshis ◽  
Michael Pikridas ◽  
...  

Abstract. During an intensive field campaign on aerosol, clouds, and ice nucleation in the Eastern Mediterranean in April 2016, we measured the abundance of ice nucleating particles (INPs) in the lower troposphere from unmanned aircraft systems (UASs). Aerosol samples were collected by miniaturized electrostatic precipitators onboard the UASs at altitudes up to 2.5 km. The number of INPs in these samples, which are active in the deposition and condensation modes at temperatures from −20 to −30 °C, were analyzed immediately after collection on site using the ice nucleus counter FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment). During the 1-month campaign, we encountered a series of Saharan dust plumes that traveled at several kilometers' altitude. Here we present INP data from 42 individual flights, together with aerosol number concentrations, observations of lidar backscattering, dust concentrations derived by the dust transport model DREAM (Dust Regional Atmospheric Model), and results from scanning electron microscopy. The effect of the dust plumes is reflected by the coincidence of INPs with the particulate matter (PM), the lidar signal, and the predicted dust mass of the model. This suggests that mineral dust or a constituent related to dust was a major contributor to the ice nucleating properties of the aerosol. Peak concentrations of above 100 INPs std L−1 were measured at −30 °C. The INP concentration in elevated plumes was on average a factor of 10 higher than at ground level. Since desert dust is transported for long distances over wide areas of the globe predominantly at several kilometers' altitude, we conclude that INP measurements at ground level may be of limited significance for the situation at the level of cloud formation.


2016 ◽  
Vol 18 (38) ◽  
pp. 26796-26806 ◽  
Author(s):  
Atanu K. Metya ◽  
Jayant K. Singh ◽  
Florian Müller-Plathe

Ice nucleation and growth on nanostructured surfaces.


2020 ◽  
Author(s):  
Jens-Michael Löwe ◽  
Markus Schremb ◽  
Volker Hinrichsen ◽  
Cameron Tropea

Abstract. Ice nucleation is of great interest for various processes such as cloud formation in the scope of atmospheric research, and icing of airplanes, ships or structures. Ice nucleation research aims to improve the knowledge about the physical mechanisms and, therefore improve the safety and reliability of the applications affected by ice nucleation. Several influencing factors like liquid supercooling or contamination with nucleants, as well as external disturbances such as an electric field or surface defects affect ice nucleation. Especially for ice crystal formation in clouds and icing of high-voltage equipment, an external electric field may have a strong impact on ice nucleation. Although ice nucleation has been widely investigated for numerous conditions, the effect of an electric field on nucleation is not yet completely understood; results reported in literature are even contradictory. In the present study, an advanced experimental approach for the examination of ice nucleation in water droplets exposed to an electric field is demonstrated. It comprises a method for droplet ensemble preparation and an experimental setup, which allows observation of the droplet ensemble during its exposure to well-defined thermal and electric fields, which are both variable over a wide range. The entire approach aims at maximizing the accuracy and repeatability of the experiments in order to enable examination of even the most minor influences on ice nucleation. For that purpose, the boundary conditions the droplet sample is exposed to during the experiment are examined in particular detail using experimental and numerical methods. The methodological capabilities and accuracy have been demonstrated based on several test nucleation experiments without an electric field, indicating almost perfect repeatability.


2012 ◽  
Vol 12 (5) ◽  
pp. 2541-2550 ◽  
Author(s):  
B. G. Pummer ◽  
H. Bauer ◽  
J. Bernardi ◽  
S. Bleicher ◽  
H. Grothe

Abstract. The ice nucleation of bioaerosols (bacteria, pollen, spores, etc.) is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate, is not yet fully understood. Here we show that pollen of different species strongly differ in their ice nucleation behaviour. The average freezing temperatures in laboratory experiments range from 240 to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. Far more intriguingly, it has turned out that water, which has been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. The ice nuclei have to be easily-suspendable macromolecules located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so presumably augment the impact of pollen on ice cloud formation even in the upper troposphere. Our experiments lead to the conclusion that pollen ice nuclei, in contrast to bacterial and fungal ice nucleating proteins, are non-proteinaceous compounds.


2016 ◽  
Vol 16 (10) ◽  
pp. 6495-6509 ◽  
Author(s):  
Karoliina Ignatius ◽  
Thomas B. Kristensen ◽  
Emma Järvinen ◽  
Leonid Nichman ◽  
Claudia Fuchs ◽  
...  

Abstract. There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 °C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between −39.0 and −37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.


2021 ◽  
Author(s):  
Kunfeng Gao ◽  
Chong-Wen Zhou ◽  
Zamin Kanji

<p>Cirrus clouds have an important influence on the climate since the ice crystal size, concentration and distribution of the clouds determine their radiation properties and effects in the atmosphere. Aviation activities in the high troposphere impact cirrus cloud formation indirectly and significantly, due to aviation contrail evolution and aviation soot particles acting as potential ice nucleating particles (INPs). Soot particles have varying ice nucleation (IN) abilities. In cirrus cloud formation conditions, pore condensation and freezing (PCF) is an important ice formation pathway for soot particles, which requires the particle to have appropriate morphology properties and mesoporous structures. In this study, the morphology and pore size of two kinds of soot were changed by a physical agitation method without any chemical modification. The IN activities of both fresh and agitated soot particles with aggregate sizes, 60, 100, 200 and 400 nm, were tested by the Horizontal Ice Nucleation Chamber (HINC) under mixed phase and cirrus cloud conditions.</p><p>In general, the IN results show clear size dependence for particles with the same agitation degree both tested soot samples at all tested temperatures (<em>T</em>) from 218 K to 243 K with a step of 5 K. In addition, all soot particles do not form ice at <em>T </em>> 235 K (homogeneous nucleation temperature, HNT) but ice nucleation was observed well below homogeneous freezing relative humidity (<em>RH</em>) for <em>T</em> < HNT, suggesting PCF as the dominating mechanism rather than deposition nucleation. Furthermore, there are significant differences between agitated and fresh soot particles for both soot samples studied. We observed that all agitated soot particles reach a higher particle activation fraction (<em>AF</em>) value at the same <em>T</em> and <em>RH</em> condition, compared to the same size fresh soot particles. Moreover, 200 and 400 nm agitated soot particles require much lower ice saturation values to reach <em>AF</em> = 0.001 than their fresh counterparts. The enhanced IN abilities of agitated soot particles are attributed to soot aggregate structure compaction thus increasing mesopore occurrence probability induced by physical agitation. Preliminary evidence obtained from the mass measurements of the single aggregates show that agitated soot particles are more dense than fresh soot particles of the same size. Furthermore, soot aggregate morphology comparisons from HR-TEM (high resolution transmission electron microscopy) images, soot-water interaction ability results from DVS (dynamic vapor sorption) tests and micro-pore size distribution results from argon desorption tests will be used to explain the soot particle IN ability promotion induced by compaction.</p>


Sign in / Sign up

Export Citation Format

Share Document