scholarly journals PATHOGENIC BACTERIA IN WATERS AND DRINKING WATER-ASSOCIATED BIOFILMS

2017 ◽  
pp. 50-61
Author(s):  
Zvezdimira Tsvetanova ◽  
Hristo Najdenski

In this review, the dissemination of bacterial pathogens in natural waters and the mechanisms of their transmission in drinking water, and the role of water-associated biofilms for their survival or growth are discussed. The current state of the studies on biofilm-formation potential of the emerged pathogens in drinking water and the role of interspecies interactions for attachment and survival of pathogenic bacteria in the biofilm community is summarized. The contribution of the biofilms for increasing antimicrobial resistance of pathogens is discussed.

RSC Advances ◽  
2020 ◽  
Vol 10 (52) ◽  
pp. 31295-31304 ◽  
Author(s):  
Zebing Zhu ◽  
Lili Shan ◽  
Fengping Hu ◽  
Zehua Li ◽  
Dan Zhong ◽  
...  

Biofilms are the main carrier of microbial communities throughout drinking water distribution systems (DWDSs), and strongly affect the safety of drinking water.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1386 ◽  
Author(s):  
Erifyli Tsagkari ◽  
William Sloan

Bacterial motility is one important factor that affects biofilm formation. In drinking water there are key bacteria in aggregation, whose biology acts to enhance the formation of biofilms. However, it is unclear whether the motility of these key bacteria is an important factor for the interactions between bacteria in drinking water, and, subsequently, in the formation of aggregates, which are precursors to biofilms. Thus, the role of the motility of one of these key bacteria, the Methylobacterium strain DSM 18358, was investigated in the interactions between bacteria in drinking water. The motility of pure Methylobacterium colonies was initially explored; if it was affected by the viscosity of substrate, the temperature, the available energy and the type of substrate. Furthermore, the role of Methylobacterium in the interactions between mixed drinking water bacteria was investigated under the mostly favourable conditions for the motility of Methylobacterium identified before. Overall, the motility of Methylobacterium was found to play a key role in the communication and interactions between bacteria in drinking water. Understanding the role of the motility of key bacteria in drinking water might be useful for the water industry as a potential tool to control the formation of biofilms in drinking water pipes.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Bruno Toledo-Silva ◽  
Fernando N. de Souza ◽  
Kristien Mertens ◽  
Sofie Piepers ◽  
Freddy Haesebrouck ◽  
...  

AbstractBiofilm formation is a significant virulence factor in Staphylococcus (S.) aureus strains causing subclinical mastitis in dairy cows. A role of environmental signals and communication systems in biofilm development, such as the agr system in S. aureus, is suggested. In the context of multispecies biofilm communities, the presence of non-aureus staphylococci (NAS) might influence S. aureus colonization of the bovine mammary gland, yet, such interspecies interactions have been poorly studied. We determined whether 34 S. chromogenes, 11 S. epidermidis, and 14 S. simulans isolates originating from bovine milk samples and teat apices (TA) were able to affect biofilm formation and dispersion of S. aureus, and if so, how isolate traits such as the capacity to regulate the S. aureus agr quorum sensing system are determinants in this process. The capacity of an agr-positive S. aureus strain to form biofilm was increased more in the presence of S. chromogenes than in the presence of S. simulans and S. epidermidis isolates and in the presence of NAS isolates that do not harbor biofilm related genes. On the other hand, biofilm dispersion of this particular S. aureus strain was suppressed by NAS as a group, an effect that was more pronounced by isolates from TA. Furthermore, the observed effects on biofilm formation and dispersion of the agr-positive S. aureus strain as well as of an agr-negative S. aureus strain did not depend on the capacity of NAS to repress the agr system.


2016 ◽  
Vol 72 (4) ◽  
pp. 773-782 ◽  
Author(s):  
Anca Farkas ◽  
Cornelia Crăciunaş ◽  
Cecilia Chiriac ◽  
Edina Szekeres ◽  
Cristian Coman ◽  
...  

2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Vanessa Silva ◽  
Manuela Caniça ◽  
José L Capelo ◽  
Gilberto Igrejas ◽  
Patrícia Poeta

ABSTRACT Antimicrobial resistance in the environmental dimension is one of the greatest challenges and emerging threats. The presence of resistant bacteria and resistance genes in the environment, especially in aquatic systems, has been a matter of growing concern in the past decade. Monitoring the presence of antimicrobial resistance species, in this particular case, Staphylococcus spp., in natural water environments could lead to a better understanding of the epidemiology of staphylococci infections. Thus, the investigation of natural waters as a potential reservoir and vehicle for transmission of these bacteria is imperative. Only a few studies have investigated the prevalence, antimicrobial resistance and genetic lineages of staphylococci in natural waters. Those studies reported a high diversity of staphylococci species and lineages in surface waters. Methicillin-resistant S. aureus were relatively prevalent in surface waters and, as expected, often presented a multidrug-resistant profile. There was a high diversity of S. aureus lineages in surface waters. The presence of S. aureus CC8 and CC5 suggests a human origin. Among the coagulase-negative staphylococci, the most frequently found in natural waters was S. warneri and S. epidermidis. These studies are extremely important to estimate the contribution of the aquatic environment in the spread of pathogenic bacteria.


2016 ◽  
Vol 27 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Luca Bolelli ◽  
Elida Nora Ferri ◽  
Stefano Girotti

Abstract Tap water filtering devices are widely employed to improve odor and taste of tap water, or to obtain refrigerated or sparkling drinking water. The presence of disinfectants-resistant bacteria in tap water is responsible of the biofilm formation inside tubes and tanks. The consequent contamination of dispensed water is a well-known hygiene problem because of the quite constant presence of potentially pathogenic bacteria likes P. aeruginosa. In this study, we tested the technical feasibility and effectiveness of the addition to different commercial devices of a packaged polysulphone fibers filter. We aimed to find a simple solution to implement the quality of the delivered water. Water contamination levels were determined in a wide selection of microfiltered water dispensers and we selected among them a representative group of 10 devices, new or in use. The packaged ultrafilter was introduced in about half of them, to monitor, when possible, in parallel the contamination levels and flow rate of a couple of identical units, with and without the filter. The placement of the dialysis filters resulted feasible at different positions along the water circuits of the variously designed filtration units. Delivered water resulted completely free from bacteria when the filter was placed exactly at, or very close to, the outlet in spite of the inner surfaces contamination. This performance was not obtained in presence of a more or less long tract of water circuits downstream the ultrafilter: a significant but not complete reduction of the plate count numbers was observed. The filters worked in continue over the whole study period, ten months, showing exactly the same efficiency. Moreover, the flow rate in presence of the filter was quite unaffected. The addition of this kind of filter to already in use water dispensers was technically easy, and its use can be recommended in all cases a simple but reliable water sanitization is requested.


RSC Advances ◽  
2019 ◽  
Vol 9 (55) ◽  
pp. 32184-32196 ◽  
Author(s):  
I. B. Gomes ◽  
L. C. Simões ◽  
M. Simões

Copper alloys demonstrated comparable or higher performance than elemental copper in biofilm control. The alloy containing 96% copper was the most promising surface in biofilm control and regrowth prevention.


2021 ◽  
Author(s):  
Cameron Lee-Lopez ◽  
Erik T Yukl

Nitric oxide (NO) is a toxic gas encountered by bacteria as a product of their own metabolism or as a result of a host immune response. Non-toxic concentrations of NO have been shown to initiate changes in bacterial behaviors such as the transition between planktonic and biofilm-associated lifestyles. The heme nitric oxide/oxygen binding proteins (H-NOX) are a widespread family of bacterial heme-based NO sensors that regulate biofilm formation in response to NO. The presence of H-NOX in several human pathogens combined with the importance of planktonic-biofilm transitions to virulence suggests that H-NOX sensing may be an important virulence factor in these organisms. Here we review the recent data on H-NOX NO signaling pathways with an emphasis on H-NOX homologues from pathogens and commensal organisms. The current state of the field is somewhat ambiguous regarding the role of H-NOX in pathogenesis. However, it is clear that H-NOX regulates biofilm in response to environmental factors and may promote persistence in the environments that serve as reservoirs for these pathogens. Finally, the evidence that large subgroups of H-NOX proteins may sense environmental signals besides NO is discussed within the context of a phylogenetic analysis of this large and diverse family.


Chemosphere ◽  
2021 ◽  
pp. 131048
Author(s):  
Victoria Rilstone ◽  
Leah Vignale ◽  
Justine Craddock ◽  
Alexandria Cushing ◽  
Yves Filion ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document