Exploring the Role of Coliform Bacteria in Class 1 Integron Carriage and Biofilm Formation During Drinking Water Treatment

2016 ◽  
Vol 72 (4) ◽  
pp. 773-782 ◽  
Author(s):  
Anca Farkas ◽  
Cornelia Crăciunaş ◽  
Cecilia Chiriac ◽  
Edina Szekeres ◽  
Cristian Coman ◽  
...  
Desalination ◽  
1997 ◽  
Vol 113 (2-3) ◽  
pp. 119-127 ◽  
Author(s):  
Joseph G. Jacangelo ◽  
R. Rhodes Trussell ◽  
Montgomery Watson

2007 ◽  
Vol 5 (3) ◽  
pp. 367-374 ◽  
Author(s):  
Romulo E. Colindres ◽  
Seema Jain ◽  
Anna Bowen ◽  
Eric Mintz ◽  
Polyana Domond

Tropical Storm Jeanne struck Haiti in September 2004, causing widespread flooding which contaminated water sources, displaced thousands of families and killed approximately 2,800 people. Local leaders distributed PūR®, a flocculent-disinfectant product for household water treatment, to affected populations. We evaluated knowledge, attitudes, practices, and drinking water quality among a sample of PūR® recipients. We interviewed representatives of 100 households in three rural communities who received PūR® and PūR®-related education. Water sources were tested for fecal contamination and turbidity; stored household water was tested for residual chlorine. All households relied on untreated water sources (springs [66%], wells [15%], community taps [13%], and rivers [6%]). After distribution, PūR® was the most common in-home treatment method (58%) followed by chlorination (30%), plant-based flocculation (6%), boiling (5%), and filtration (1%). Seventy-eight percent of respondents correctly answered five questions about how to use PūR®; 81% reported PūR® easy to use; and 97% reported that PūR®-treated water appears, tastes, and smells better than untreated water. Although water sources tested appeared clear, fecal coliform bacteria were detected in all sources (range 1 – >200 cfu/100 ml). Chlorine was present in 10 (45%) of 22 stored drinking water samples in households using PūR®. PūR® was well-accepted and properly used in remote communities where local leaders helped with distribution and education. This highly effective water purification method can help protect disaster-affected communities from waterborne disease.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 745
Author(s):  
Collins Njie Ateba ◽  
Naledi Mahalia Tabi ◽  
Justine Fri ◽  
Marie Ebob Agbortabot Bissong ◽  
Cornelius Carlos Bezuidenhout

With the increasing spread of antimicrobial resistance, there is growing attention to the contribution made by drinking water systems. The potential health impact of two drinking water treatment and distribution systems (A and B) in the North-West Province of South Africa was determined by investigating the water quality and occurrence of antimicrobial-resistant heterotrophic bacteria and genes in the raw and treated water over four seasons. Most of the physicochemical parameters except for electrical conductivity were within permissible limits. Coliform bacteria reduced from raw to potable water except for counts higher than the threshold recorded in Summer and Winter. A total of 203 heterotrophic bacterial isolates were recovered on chromogenic R2A medium and subjected to susceptibility testing to twelve antibiotics. Most of the isolates were resistant to β-lactam antibiotics and Trimethoprim, whereas they were susceptible to Ciprofloxacin, Erythromycin, and Neomycin. The proportions of Cephalothin and Kanamycin-resistant isolates were significantly higher (p < 0.05) after treatment for site A, compared to significantly lower β-lactam, Oxytetracycline, and Trimethoprim-resistant isolates for B. Over 50% of isolates were of high risk, indicating their origin from high antibiotic-use sources. Seventy-one (35%) isolates were multidrug-resistant, out of which the majority (53.5%, n = 38) possessed the strA gene, followed by strB 21 (29.6%), dfrB 13 (18.3%), aadA 11 (15.5%), blaCTX-M 5 (7.0%), and tetA 3 (4.2%). The 16S rRNA gene sequences of the isolates revealed strains belonging to eight bacterial families, some of which are clinically important.


Author(s):  
Jia Liu ◽  
Xiaohui Sun ◽  
Yuting Ma ◽  
Junyi Zhang ◽  
Changan Xu ◽  
...  

Pseudomonas aeruginosa in water lines may cause bacteria pollution indrinking fountains that could affect the quality of potable water, thus posing a risk to public health. A clean and efficient strategy is required for drinking water treatment for food safety. In this study, an AiiA-homologous lactonase was cloned from a deep-sea probiotics Bacillus velezensis (DH82 strain), and was heterologously expressed so that the capacity of the enzyme on the N-acyl-L-homoserine lactone (AHL)-degrading, effect of bacterial proliferation, biofilm formation and toxic factors release, and membrane pollution from P. aeruginosa could each be investigated to analyze the effect of the enzyme on water treatment. The enzyme effectively degraded the signal molecules of P. aeruginosa (C6-HSL and C12-HSL), inhibited early proliferation and biofilm formation, significantly reduced toxic products (pyocyanin and rhamnolipid), and inhibited bacterial fouling on the filter membrane, which prevented the secondary contamination of P. aeruginosa in drinking water. The findings demonstrated that the quorum quenching enzyme from probiotics could prevent bacteria pollution and improve potable water quality, and that the enzyme treatment could be used as a probable strategy for drinking water treatment.


2020 ◽  
Vol 4 ◽  
pp. 56
Author(s):  
Colin Hendrickson ◽  
Jared Oremo ◽  
Oscar Oluoch Akello ◽  
Simon Bunde ◽  
Isaac Rayola ◽  
...  

 Background: Decentralized drinking water treatment methods generally apply membrane-based treatment approaches. Ozonation of drinking water, which previously has only been possible at large centralized facilities, can now be accomplished on a small-scale using microplasma technology. The efficacy of decentralized solar-powered drinking water treatment systems has not previously been described. Methods: We established a 1,000L decentralized solar-powered water treatment system located in Kisumu County, Kenya. Highly contaminated surface water is pumped to the treatment system, which includes flocculation and filtration steps prior to ozonation. Turbidity, total coliform bacteria, and E. coli were measured at various stages of water treatment, and bacterial log reduction values (LRVs) were calculated. Results: Forty-seven trials were conducted in which1000L of water were flocculated, filtered, and ozonated for 180 minutes. Baseline turbidity and E. coli concentrations were reduced from a median of 238 nephelometric turbidity units (NTU) and 2,419.7 most probable number/100mL, respectively, in surface water to 1.0 NTU and undetectable E. coli after ozonation for 180 minutes. The median E. coli LRV was 3.99. Conclusions: The solar-powered, decentralized water treatment system that utilizes ozonation for disinfection was founded to reduce E. coli by more than 3 log-orders of magnitude despite the high turbidity of the raw water. Further research is needed to characterize limitations, scalability, economic viability, and community perspectives that could help determine the role for similar systems in other settings.


Sign in / Sign up

Export Citation Format

Share Document