scholarly journals CATALYTIC CONVERSION OF BIOGAS INTO SYNTHESIS GAS ON Ni, Co AND Ni-Co CATALYSTS

2020 ◽  
Vol 5 (443) ◽  
pp. 14-20
Author(s):  
Baizhumanova T.S., ◽  
◽  
Zhang Х., ◽  
Murzin D.Y., ◽  
Tungatarova S.A., ◽  
...  

The world's oil reserves are shrinking every day due to continuous production and processing using the most modern technologies. Scientists around the world are looking for different types of raw materials and ways to use the vast resources of natural gas as a substitute for oil. In this regard, considerable attention is paid to natural and associated gas as an alternative source of raw materials for the petrochemical industry. In this paper, Ni, Co and Ni-Co catalysts carried to θ-Al2O3 prepared by the traditional method of air impregnation for moisture capacity are studied. The developed compositions of monometallic and bimetallic compositions of catalysts were studied by the XRD method. The efficiency of the dry methane reforming reaction was investigated in a stationary reactor under the optimal process conditions found experimentally: T = 700 and 900oC, GHSV = 6000 h-1 and CH4:CO2: Ar = 1: 1: 1.

2021 ◽  
Vol 447 (3) ◽  
pp. 18-24
Author(s):  
D.B. Augaliev ◽  
M.K. Erkibaeva ◽  
A.O. Aidarova ◽  
S.А. Tungatarova ◽  
T.S. Baizhumanova

The world's oil reserves are decreasing every day due to the continuous production and processing of the most modern technologies. Scientists all over the world are looking for various raw materials and methods to use the vast resources of natural gas as a substitute for petrochemicals. In this regard, great attention is drawn to natural gas as an alternative source of raw materials for petrochemical industries. The purpose of this work is to study the reaction of methane dehydrogenation on new 20%La-10%Ce20%Mg-50% glycine catalysts prepared by the SHS method to identify the optimal conditions for their preparation, concentration and ratio of metals, the influence of contact time and process temperature on the direction and mechanism of the reaction. The results of the study of 20% La-10% Ce-20% Mg-50% glycine catalyst prepared by the SHS method in the process of oxidative dehydrogenation of methane into C2 hydrocarbons are presented. On the basis of experimental studies, it was found that the composition of the catalyst exhibits high activity in the above reaction under the found optimal conditions. Thus, the influence of reaction temperature on the developed composition of catalysts for oxidative conversion of methane has been determined that the optimum temperature for the selective formation of ethane and ethylene is T=700o С. It was found that for selective oxidation of a mixture of CH4: O2 : Ar in C2 hydrocarbons the optimal conditions are: T=700o С, CH4:O2=2,5:1, 5000 h-1.


2013 ◽  
Vol 2 (3) ◽  
pp. 22-28
Author(s):  
Rudy Agustriyanto ◽  
Akbarningrum Fatmawati

The depletion of oil reserves hasbeen increasing interest in the development of alternative renewable energysources. Cheese whey as a waste of cheese production is one of the raw materials that can be used for bioethanol production. The aim ofthis study is to conduct critical assessment of the cheese whey fermentation process by applying the basic concepts of engineering and mathematics, to investigate the characteristics of the cheese whey fermentation process into bioethanol, and to obtain the optimum design of fermenter. This is done by developing steady state model of cheese whey fermentation system into ethanol based on kinetic data from previous research and using mass balance principle.The model was then used to simulate the continuous fermentation of cheese whey for ethanol production. At steady state conditions, the fermentation process of cheese whey into bioethanol is affected by the hydraulic retention time (R). At steady state conditions, the optimum value of R obtained is 25 hours based onhigh ethanol productivity. The results of this study will be useful in the design process and control of cheese whey fermentation reactions into ethanol.The utilization of waste from cheese production (cheese whey) that contain sugars which can be fermented will provide added value to the waste while providing an alternative source of renewable energy that is needed due to energy crisis.


2021 ◽  
pp. 002199832110316
Author(s):  
Nuno Gama ◽  
B Godinho ◽  
Ana Barros-Timmons ◽  
Artur Ferreira

In this study polyurethane (PU) residues were mixed with residues of textile fibers (cotton, wool and synthetic fibers up to 70 wt/wt) to produce 100% recycled composites. In addition, the effect of the type of fiber on the performance of the ensuing composites was evaluated. The presence of fibers showed similar effect on the density, reducing the density in the 5.5-9.0% range. In a similar manner, the addition of fillers decreased their thermal conductivity. The 70 wt/wt wool composite presented 38.1% lower thermal conductivity when compared to the neat matrix, a reduction that was similar for the other type of fibers. Moreover, the presence of fillers yields stiffer materials, especially in the case of the Wool based composites, which with 70 wt/wt of filler content increased the tensile modulus of the ensuing material 3.4 times. This was attributed to the aspect ratio and stiffness of this type of fiber. Finally, the high-water absorption and lower thermal stability observed, especially in the case of the natural fibers, was associated with the hydrophilic nature of fibers and porosity of composites. Overall, the results suggest that these textile-based composites are suitable for construction and automotive applications, with the advantage of being produced from 100% recycled raw-materials, without compromised performance.


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 657
Author(s):  
José María Encinar ◽  
Juan Félix González ◽  
Sergio Nogales-Delgado

On account of the continuous decrease in oil reserves, as well as the promotion of sustainable policies, there is an increasing interest in biomass conversion processes, which imply the search for new raw materials as energy sources, like forestry and agricultural wastes. On the other hand, gasification seems to be a suitable thermal conversion process for this purpose. This work studied the thermogravimetry of the steam gasification of charcoal from heather (Calluna vulgaris) in order to determine the kinetics of the process under controlled reaction conditions. The variables studied were temperature (from 750 to 900 °C), steam partial pressure (from 0.26 to 0.82 atm), initial charcoal mass (from 50 to 106 mg), particle size (from 0.4 to 2.0 mm), N2 and steam volumetric flows (from 142 to 446 mL·min−1) and catalyst (K2CO3) concentration (from 0 to 10% w/w). The use of the shrinking core model and uniform conversion model allowed us to determine the kinetic parameters of the process. As a result, a positive influence of catalyst concentration was found up to 7.5% w/w. The kinetic study of the catalytic steam gasification showed activation energies of 99.5 and 114.8 kJ·mol−1 and order of reactions (for steam) of 1/2 and 2/3.


2021 ◽  
Author(s):  
Lorenz Scheit

ABSTRACT Introduction A wide variety of different types of wearable sensors are being developed around the world and introduced into the armed forces for military purposes. Competing states must rapidly develop ready-to-use systems that are robust, functional, valid, and practical. There appears to be potential for optimizing the successful and effective introduction of wearable sensors into the German armed forces (Bundeswehr) for military medical applications. The purpose of this study was to identify specific options for improving and optimizing the introduction of modern technologies such as wearable sensors into the structures of the German armed forces. Materials and Methods Nine stakeholders were identified who could provide a qualified statement on the introduction of wearable sensors, of which six agreed to participate in an expert interview. The six qualitative expert interviews, which were conducted for a master’s thesis at the Bundeswehr University in Hamburg, were selected on the basis of their thematic involvement and readiness for an interview and provided the basis for exploring processes that can possibly optimize the introduction of wearable sensors into modern armed forces such as the Bundeswehr. These interviews were carried out and analyzed using the Lamnek’s method. Results Six expert interviews were analyzed and the most relevant statements were summarized and presented. Thirteen options for optimization were identified and included, for example, interdisciplinary networking, optimization of information flow, and strategic weighting. Conclusions Several potential options have been identified that can optimize the introduction of wearable sensors into the German armed forces to a greater or lesser extent. Bundeswehr experts agree that above all structurally relevant improvements such as “development of data analysis standards,” “legal requirements,” “interdisciplinarity,” “acceleration of development,” and “centralization and structured cooperation” should play an important role in the implementation of wearable sensors.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 799
Author(s):  
Justyna Miedzianowska ◽  
Marcin Masłowski ◽  
Przemysław Rybiński ◽  
Krzysztof Strzelec

Increasingly, raw materials of natural origin are used as fillers in polymer composites. Such biocomposites have satisfactory properties. To ensure above-average functional properties, modifications of biofillers with other materials are also used. The presented research work aimed to produce and characterize elastomeric materials with a straw-based filler and four different types of montmorillonite. The main research goal was to obtain improved functional parameters of vulcanizates based on natural rubber. A series of composites filled with straw and certain types of modified and unmodified nano-clays in various ratios and amounts were prepared. Then, they were subjected to a series of tests to assess the impact of the hybrids used on the final product. It has been shown that the addition of optimal amounts of biofillers can, inter alia, increase the tensile strength of the composite, improve damping properties, extend the burning time of the material and affect the course of vulcanization or cross-linking density.


Author(s):  
Peng Liu ◽  
Hongbin Zhang ◽  
Sinong Wang ◽  
Hui Yu ◽  
Bingjie Lu ◽  
...  

AbstractThe crystallinity indices (CrI) of Chinese handmade papers were investigated using the X-ray diffraction (XRD) method. Four Chinese handmade papers, Yingchun, Zhuma, Yuanshu and Longxucao papers were used as model substrates of mulberry bark, ramie, bamboo and Eulaliopsis binata papers, respectively. Two forms of the paper samples, paper sheets and their comminuted powders, were used in this study. The results showed that their XRD patterns belong to the cellulose-I type and Iβ dominates the cellulose microstructure of these paper samples. Moreover, it was found that the microstructures and CrIs of cellulose of these papers were changed by the grinding treatment. This work suggested that the sheet form of the handmade papers is suitable to determine CrI by XRD, despite the contribution of non-cellulosic components in the papers. The order of CrIs for these paper sheet samples was Yingchun, Zhuma, Longxucao and Yuanshu papers. Besides CrIs, differences in cross-sectional areas of the crystalline zone of cellulose can be used for comparing different types of handmade papers. It was also found that the CrIs and crystallite size of paper cellulose varied between the sheet samples and the powder samples, illustrating that the pulverisation has a negative influence on the microstructure of the handmade papers.


2013 ◽  
Vol 457-458 ◽  
pp. 65-71
Author(s):  
Jing Ru Jia

The polyfunctional organic compounds 2- hydroxymethyl -1,4- butanediol (trihydric alcohol) and toluene diisocyanate -2, 4- diisocyanate (TDI) were taken as the raw materials in this study. A polyurethane dendrimer was synthesized by utilizing the difference in the reaction activity of two isocyanate groups of TDI at different temperatures. The polymerization process conditions were studied. The addition polymerization of para-position NCO groups occurred at 50 °C, and that of ortho NCO groups occurred at 90 °C. According to the structure of the dendrimer synthesized, methyl orange was used as the guest molecule. Consequently, the aqueous methyl orange showed a phase transfer. With the increase of dendrimer concentration, the transfer rate of methyl orange increased.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 670
Author(s):  
Jaroslav Legemza ◽  
Róbert Findorák ◽  
Branislav Buľko ◽  
Jaroslav Briančin

This article deals with material research of selected types of quartz and quartzites in order to determine the priority of their use in the production of ferrosilicon and pure silicon, respectively. The highest quality quartzes and quartzites are commonly used in metallurgy, but not all types of these silicon raw materials are suitable for the production of ferrosilicon and pure silicon, despite their similar chemical composition. Behavior differences can be observed in the process conditions of heating and carbothermic production of ferrosilicon and silicon. These differences depend, in particular, on the nature and content of impurities, and the granularity (lumpiness) and microstructure of individual grains. The research focused primarily on determining the physicochemical and metallurgical properties of silicon raw materials. An integral part of the research was also the creation of a new methodology for determining the reducibility of quartzes (or quartzites), which could be used for real industrial processes and should be very reliable. The results of the laboratory experiments and evaluation of the physicochemical and metallurgical properties of the individual quartzes (or quartzites) are presented in the discussion. Based on comparison of the tested samples’ properties, their priority of use was determined. This research revealed the highest quality in quartzite from Sweden (Dalbo deposit) and Ukraine (Ovruč deposit) and quartz from Slovakia (Švedlár deposit). The use of these raw materials in industrial conditions is expected to result in the achievement of better production parameters, such as higher yield and product quality and lower electricity consumption.


Sign in / Sign up

Export Citation Format

Share Document