scholarly journals Aspect Based Emotion Detection and Topic Modeling on Social Media Reviews

2021 ◽  
Author(s):  
Ganesh N. Jorvekar ◽  
Mohit Gangwar

In recent years, the number of user comments and text materials has increased dramatically. Analysis of the emotions has drawn interest from researchers. Earlier research in the field of artificial-intelligence concentrate on identification of emotion and exploring the explanation the emotions can’t recognized or misrecognized. The association between the emotions leads to the understanding of emotion loss. In this Work we are trying to fill the gap between emotional recognition and emotional co-relation mining through social media reviews of natural language text. The association between emotions, represented as the emotional uncertainty and evolution, is mainly triggered by cognitive bias in the human emotion. Numerous types of features and Recurrent neural-network (RNN) as deep learning model provided to mine the emotion co-relation from emotion detection using text. The rule on conflict of emotions is derived on a symmetric basis. TF-IDF, NLP Features and Co-relation features has used for feature extraction as well as section and Recurrent Neural Network (RNN) and Hybrid deep learning algorithm for classification has used to demonstrates the entire research experiments. Finally evaluate the system performance with various existing system and show the effectiveness of proposed system.

Author(s):  
Rafly Indra Kurnia ◽  
◽  
Abba Suganda Girsang

This study will classify the text based on the rating of the provider application on the Google Play Store. This research is classification of user comments using Word2vec and the deep learning algorithm in this case is Long Short Term Memory (LSTM) based on the rating given with a rating scale of 1-5 with a detailed rating 1 is the lowest and rating 5 is the highest data and a rating scale of 1-3 with a detailed rating, 1 as a negative is a combination of ratings 1 and 2, rating 2 as a neutral is rating 3, and rating 3 as a positive is a combination of ratings 4 and 5 to get sentiment from users using SMOTE oversampling to handle the imbalance data. The data used are 16369 data. The training data and the testing data will be taken from user comments MyTelkomsel’s application from the play.google.com site where each comment has a rating in Indonesian Language. This review data will be very useful for companies to make business decisions. This data can be obtained from social media, but social media does not provide a rating feature for every user comment. This research goal is that data from social media such as Twitter or Facebook can also quickly find out the total of the user satisfaction based from the rating from the comment given. The best f1 scores and precisions obtained using 5 classes with LSTM and SMOTE were 0.62 and 0.70 and the best f1 scores and precisions obtained using 3 classes with LSTM and SMOTE were 0.86 and 0.87


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 652 ◽  
Author(s):  
Carlo Augusto Mallio ◽  
Andrea Napolitano ◽  
Gennaro Castiello ◽  
Francesco Maria Giordano ◽  
Pasquale D'Alessio ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) pneumonia and immune checkpoint inhibitor (ICI) therapy-related pneumonitis share common features. The aim of this study was to determine on chest computed tomography (CT) images whether a deep convolutional neural network algorithm is able to solve the challenge of differential diagnosis between COVID-19 pneumonia and ICI therapy-related pneumonitis. Methods: We enrolled three groups: a pneumonia-free group (n = 30), a COVID-19 group (n = 34), and a group of patients with ICI therapy-related pneumonitis (n = 21). Computed tomography images were analyzed with an artificial intelligence (AI) algorithm based on a deep convolutional neural network structure. Statistical analysis included the Mann–Whitney U test (significance threshold at p < 0.05) and the receiver operating characteristic curve (ROC curve). Results: The algorithm showed low specificity in distinguishing COVID-19 from ICI therapy-related pneumonitis (sensitivity 97.1%, specificity 14.3%, area under the curve (AUC) = 0.62). ICI therapy-related pneumonitis was identified by the AI when compared to pneumonia-free controls (sensitivity = 85.7%, specificity 100%, AUC = 0.97). Conclusions: The deep learning algorithm is not able to distinguish between COVID-19 pneumonia and ICI therapy-related pneumonitis. Awareness must be increased among clinicians about imaging similarities between COVID-19 and ICI therapy-related pneumonitis. ICI therapy-related pneumonitis can be applied as a challenge population for cross-validation to test the robustness of AI models used to analyze interstitial pneumonias of variable etiology.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 931
Author(s):  
Kecheng Peng ◽  
Xiaoqun Cao ◽  
Bainian Liu ◽  
Yanan Guo ◽  
Wenlong Tian

The intensity variation of the South Asian high (SAH) plays an important role in the formation and extinction of many kinds of mesoscale systems, including tropical cyclones, southwest vortices in the Asian summer monsoon (ASM) region, and the precipitation in the whole Asia Europe region, and the SAH has a vortex symmetrical structure; its dynamic field also has the symmetry form. Not enough previous studies focus on the variation of SAH daily intensity. The purpose of this study is to establish a day-to-day prediction model of the SAH intensity, which can accurately predict not only the interannual variation but also the day-to-day variation of the SAH. Focusing on the summer period when the SAH is the strongest, this paper selects the geopotential height data between 1948 and 2020 from NCEP to construct the SAH intensity datasets. Compared with the classical deep learning methods of various kinds of efficient time series prediction model, we ultimately combine the Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) method, which has the ability to deal with the nonlinear and unstable single system, with the Permutation Entropy (PE) method, which can extract the SAH intensity feature of IMF decomposed by CEEMDAN, and the Convolution-based Gated Recurrent Neural Network (ConvGRU) model is used to train, test, and predict the intensity of the SAH. The prediction results show that the combination of CEEMDAN and ConvGRU can have a higher accuracy and more stable prediction ability than the traditional deep learning model. After removing the redundant features in the time series, the prediction accuracy of the SAH intensity is higher than that of the classical model, which proves that the method has good applicability for the prediction of nonlinear systems in the atmosphere.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6460
Author(s):  
Dae-Yeon Kim ◽  
Dong-Sik Choi ◽  
Jaeyun Kim ◽  
Sung Wan Chun ◽  
Hyo-Wook Gil ◽  
...  

In this study, we propose a personalized glucose prediction model using deep learning for hospitalized patients who experience Type-2 diabetes. We aim for our model to assist the medical personnel who check the blood glucose and control the amount of insulin doses. Herein, we employed a deep learning algorithm, especially a recurrent neural network (RNN), that consists of a sequence processing layer and a classification layer for the glucose prediction. We tested a simple RNN, gated recurrent unit (GRU), and long-short term memory (LSTM) and varied the architectures to determine the one with the best performance. For that, we collected data for a week using a continuous glucose monitoring device. Type-2 inpatients are usually experiencing bad health conditions and have a high variability of glucose level. However, there are few studies on the Type-2 glucose prediction model while many studies performed on Type-1 glucose prediction. This work has a contribution in that the proposed model exhibits a comparative performance to previous works on Type-1 patients. For 20 in-hospital patients, we achieved an average root mean squared error (RMSE) of 21.5 and an Mean absolute percentage error (MAPE) of 11.1%. The GRU with a single RNN layer and two dense layers was found to be sufficient to predict the glucose level. Moreover, to build a personalized model, at most, 50% of data are required for training.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoting Yin ◽  
Xiaosha Tao

Online business has grown exponentially during the last decade, and the industries are focusing on online business more than before. However, just setting up an online store and starting selling might not work. Different machine learning and data mining techniques are needed to know the users’ preferences and know what would be best for business. According to the decision-making needs of online product sales, combined with the influencing factors of online product sales in various industries and the advantages of deep learning algorithm, this paper constructs a sales prediction model suitable for online products and focuses on evaluating the adaptability of the model in different types of online products. In the research process, the full connection model is compared with the training results of CNN, which proves the accuracy and generalization ability of CNN model. By selecting the non-deep learning model as the comparison baseline, the performance advantages of CNN model under different categories of products are proved. In addition, the experiment concludes that the unsupervised pretrained CNN model is more effective and adaptable in sales forecasting.


2021 ◽  
Author(s):  
Athira B ◽  
Josette Jones ◽  
Sumam Mary Idicula ◽  
Anand Kulanthaivel ◽  
Enming Zhang

Abstract The widespread influence of social media impacts every aspect of life, including the healthcare sector. Although medics and health professionals are the final decision makers, the advice and recommendations obtained from fellow patients are significant. In this context, the present paper explores the topics of discussion posted by breast cancer patients and survivors on online forums. The study examines an online forum, Breastcancer.org, maps the discussion entries to several topics, and proposes a machine learning model based on a classification algorithm to characterize the topics. To explore the topics of breast cancer patients and survivors, approximately 1000 posts are selected and manually labeled with annotations. In contrast, millions of posts are available to build the labels. A semi-supervised learning technique is used to build the labels for the unlabeled data; hence, the large data are classified using a deep learning algorithm. The deep learning algorithm BiLSTM with BERT word embedding technique provided a better f1-score of 79.5%. This method is able to classify the following topics: medication reviews, clinician knowledge, various treatment options, seeking and providing support, diagnostic procedures, financial issues and implications for everyday life. What matters the most for the patients is coping with everyday living as well as seeking and providing emotional and informational support. The approach and findings show the potential of studying social media to provide insight into patients' experiences with cancer like critical health problems.


2021 ◽  
Vol 11 (12) ◽  
pp. 3044-3053
Author(s):  
Rakesh Kumar Mahendran ◽  
V. Prabhu ◽  
V. Parthasarathy ◽  
A. Mary Judith

Myocardial infarction (MI) may precipitate severe health damage and lead to irreversible death of the heart muscle, the result of prolonged lack of oxygen if it is not treated in a timely manner. Lack of accurate and early detection techniques for this heart disease has reduced the efficiency of MI diagnosis. In this paper, the design, and implementation of an efficient deep learning algorithm called Adaptive Recurrent neural network (ARNN) is proposed for the MI detection. The main objective of the proposed work is the accurate identification of MI disease using ECG signals. ECG signal denoising has been performed using the Multi-Notch filter, which removes the specified noise frequency range. Discrete wavelet transform (DWT) is utilized for performing the feature extraction that decomposes the ECG signal into varied scales with waveletfiltering bank. After the extraction of specific QRS features, classification of the defected and normal ECG arrhythmic beat has been performed using the deep learning-based ARNN classifier. The MIT-BIH database has been used for testing and training data. The performance of the proposed algorithm is evaluated based on classification accuracy. Results that are attained include the classification accuracy of about 99.21%, 99% of sensitivity and 99.4% of specificity with PPV and NPV of about 99.4 and 99.01 values indicate the enhanced performance of our proposed work compared with the conventional LSTM-CAE and LSTM-CNN techniques.


Sign in / Sign up

Export Citation Format

Share Document