scholarly journals The Study of Grading Method and Application Performance of Management Systems of Rural Potable Water Treatment Plants

2021 ◽  
Author(s):  
Xinkai Qiu ◽  
Cheng Lu ◽  
Yinying Zhou ◽  
Shuyang Chen

The application of management systems can solve the manage problems and improve the potable water safety for rural potable water treatment plants. The systems in Zhejiang province, China are studied and the system grading method is proposed as attendance management (G1), basic automatic management (G2), quantity-based automatic management (G3), quality-based intelligent management (G4), quality-based & feedback controlled intelligent management (G5). G3 to G5 systems can achieve remote control and G4, G5 systems can guarantee the finished water quality theoretically. The application performance of the management systems shows G5 system has the lowest allocated annual cost as 11500 RMB per year when used to service life as 5 years (23.37% of G1 system). By using G5 system, the finished water turbidity is below 0.8 NTU, pH is between 7.6 to 8.2, and the qualification rate of residual chlorine is above 92.5%, which performances better than G3 system with finished water turbidity below 9.7 NTU, pH between 7.3 to 8.2, and the qualification rate of residual chlorine above 88.7%. G5 system is recommended when the plant is hard to be staffed or the inlet water quality is not good. G3 system is recommended when the inlet water quality is good or the purchase budget is limited.

2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Adriana Muniz De Almeida Albuquerque

The water purification procedure aims to obtain a product appropriate for human consumption, minimizing the presence of contaminants and toxic substances present in the water. Among these contaminants, some radionuclides of natural origin, such as uranium, thorium and their descendants, have been identified. Studies have shown that the stages of purification are quite effective in removing the radionuclides contained in water. The removal is due to co-precipitation of the radionuclides with the suspended materials and the precipitated material is accumulated and characterized as a Technologically Concentrated Natural Occurrence Radioactive Material (TENORM) by the United States Environmental Protection Agency (USEPA). This residue can present significant levels of radioactivity and, when discarded in the environment without any treatment, can generate a problem of environmental impact and a risk to the health of the population. In this way, some gamma emitters of the series of U, Th and the K-40 were determined in the residues generated at the Potable Water Treatment Plants – PWTPs in six municipalities of Pernambuco. The results obtain corroborate the classification of the residues generated in the PWTPs as concentrators of the radioactive components contained in the water supplied to the system and reinforce the need for the release to the environment, which is the usual way of disposal of this waste, to be carried out only after considering the radiological protection standards established.


2013 ◽  
Vol 3 (4) ◽  
pp. 549-556 ◽  
Author(s):  
Kaveh Sookhak Lari ◽  
Morteza Kargar

High-rate lamella settlers in clarifiers and triple media filters have been implemented in Isfahan water treatment plant (known as ‘Baba-Sheikh-Ali’) in Iran to upgrade existing clarification/filtration processes during the recent years. The applied technologies are mainly used to reduce finished water turbidity as the primary regional criterion on water quality. However, application of both technologies faced some operational limitations since they began to work. These problems are due to the existing layout of the process units and available materials. The current study focuses on performance of restricted application of the two technologies with respect to turbidity removal. Online measured turbidity data from a two-year field observation (since March 2010) are used. In particular, results show a more promising and long-term effect on turbidity removal due to tripling filter media rather than application of the lamella settlers in clarifiers. The reasons for these observations are discussed.


2017 ◽  
Vol 12 (1) ◽  
pp. 87-96 ◽  
Author(s):  
J. S. Hyung ◽  
K. B. Kim ◽  
M. C. Kim ◽  
I. S. Lee ◽  
J. Y. Koo

Ozone dosage in most water treatment plants is operated by determining the ozone concentration with the experience of the operation. In this case, it is not economical. This study selected the factors affecting residual ozone concentration and attempted to estimate the optimum amount of hydrogen peroxide dosage for the control of the residual ozone concentration by developing a model for the prediction of the residual ozone concentration. The prediction formulas developed in this study can quickly respond to the environment of water quality and surrounding environmental factors, which change in real time, so it is judged that they could be used for the operation of the optimum ozone process, and the control of ozone dosage could be used as a new method in controlling the concentration of ozone dosage and the concentration of residual ozone.


2019 ◽  
Vol 18 (2) ◽  
pp. 135
Author(s):  
Hendra Andiananta Pradana ◽  
Sri Wahyuningsih ◽  
Elida Novita ◽  
Aisyah Humayro ◽  
Bambang Herry Purnomo

ABSTRAKLatar belakang: Salah satu sumber air permukaan yang memiliki peran vital bagi ekosistem perairan dan makhluk hidup adalah sungai. Sungai Bedadung merupakan salah satu sungai besar yang melewati wilayah Perkotaan Kabupaten Jember. Air dari sungai tersebut dimanafaatkan sebagai pemasok air baku untuk PDAM Kabupaten Jember. Akan tetapi akibat tekanan aktivitas antropogenik menurunkan kualitas air sungai tersebut. Pemantauan kualitas air diperlukan sebagai salah satu pertimbangan pengendalian pencemaran pada air sungai tersebut. Tujuan penelitian ini mengidentifikasi kondisi kualitas air dan beban pencemaran di intake intalasi pengolahan air (IPA) PDAM Kabupaten Jember.Metode: Pengambilan contoh air secara grab sampling dilakukan di intake IPA Tegal Gede dan IPA Tegal Besar dengan beberapa parameter kualitas air yang diamati yaitu suhu, kekeruhan, TDS, pH, DO, BOD, COD, yang dibandingkan dengan baku mutu Peraturan Pemerintah Republik Indonesia Nomor 82 tahun 2001 serta debit air yang digunakan untuk menghitung beban pencemaran serta dilanjutkan uji t untuk mengetahui perbandingan kondisi beban pencemaran.Hasil: Hasil penelitian menujukkan bahwa kualitas air sungai di intake IPA Tegal Gede dan IPA Tegal Besar secara berurutan tergolong kelas I dan III. Nilai COD di intake IPA Tegal Besar tergolong kelas III. Nilai beban pencemaran menujukkan perbedaan yang signifikan pada kedua intake IPA. Beban pencamaran di IPA Tegal Gede dan Tegal Besar dengan nilai rata-rata secara berurutan yaitu 24,96 kg/hari dan 74,03 kg/hari.Simpulan: Kualitas air Sungai Bedadung berdasarkan parameter fisika dan kimia di intake IPA Tegal Gede di IPA Tegal Besar secara berurutan tergolong kelas I dan III serta kondisi beban pencemaranya beragam.ABSTRACTBackground: River as one of surface water resources has a vital role for ecosystems and organism. Jember Regency Municipal Waterworks utilized the river as water raw resources. However, the pressure of anthropogenic activity decreases the river's water quality. Water quality monitoring is needed as a consideration for pollution controlling in the river. The focus research identified the condition of water quality and pollution load in the water treatment plants (WTP) intake of Jember Regency Municipal Waterworkers.Method: The water sampling by grab sampling was carried out at intake of Tegal Gede and Tegal Besar WTP with several observed pysicochemical parameters i.e temperature, turbidity, TDS, pH, DO, BOD, COD compered with the quality standard of Government Regulation No. 82 of 2001 and stream flow for pollution load measurement and continued by t-test to compire the pollution load conditions.Result: The results denote that the water quality in Tegal Gede and Tegal Besar WTP intakes were classified into first (I) and third (III) class. COD caused water quality decreased in intake of Tegal Besar WTP. The t-test of the pollution load represented a significantly difference at the both water treatment plants locations. Pollution load at Tegal Gede and Tegal Besar WTP showed the average values of 24.96 kg/day and 74.03 kg/day. Conclusion: The water quality refer to physicochemical parameter in intake of Tegal Gede and Tegal Besar were categorized WTP into first (I) and third (III) class, furthermore the condition of the pollution load varies.


2014 ◽  
Vol 2014 (14) ◽  
pp. 2625-2640
Author(s):  
Alice E. Towey ◽  
John M. Hake ◽  
Erika R. Gardner ◽  
Joseph A. Augustine

2017 ◽  
Vol 29 (69) ◽  
Author(s):  
María Eugenia Ibarrarán Viniegra ◽  
Alfonso Mendoza Velázquez ◽  
Cristina Pastrana López ◽  
Erika Jazmín Manzanilla Interian

Resumen: la calidad y la disponibilidad de agua de los ríos en México son cruciales para el desarrollo regional y nacional, pero tienen problemas graves; en 2006, 74 por ciento de las aguas superficiales tenía grados diferentes de contaminación. El objetivo de esta investigación es identificar la influencia de algunas variables socioeconómicas en la calidad del agua superficial en las regiones hidrológicas administrativas, y proponer acciones para mejorarla. Según el análisis econométrico, la actividad económica y la densidad poblacional perjudican la calidad del agua superficial en dichas regiones. Es poco el efecto del aumento de las plantas de tratamiento de agua en cuanto a la contaminación; el incremento en el caudal tratado es contraproducente para la calidad del agua. Estos elementos presentan aspectos importantes para ser abordados por las políticas públicas.Palabras clave: agua superficial; calidad del agua; contaminación de ríos; cuencas hidrológicas; plantas de tratamiento de agua; política pública; modelos econométricos. Socio-economic determinants of surface water quality in MexicoAbstract: the quality and availability of water in Mexican rivers is critical for regional and national development, but they pose serious problems. In 2006, 74 percent of the surface water in Mexico had different levels of pollution. The objective of this research is to identify the influence of socioeconomic variables in surface water quality on each of the hydrological-administrative regions (hars) and to propose actions in order to improve its quality. After an econometric analysis, results show that surface water quality in the different hars is affected by economic activity and population density. On the other hand, the increase of water treatment plants has little impact on reducing water pollution and the increase of treated water shows a counterproductive effect on water quality. All of these aspects should be considered when designing public policy.Key words: surface water; water quality; pollution of rivers; water basins; water treatment plants; public policy; econometric models.


2018 ◽  
Vol 2 (2) ◽  
pp. 39-48
Author(s):  
Hayder Mohammed Issa ◽  
Reem Ahmed Alrwai

Safe source of drinking water is always considered as an essential factor in water supply for cities and urban areas. As a part of this issue, drinking water quality is monitored via a useful scheme: developing drinking water quality index DWQI. DWQI is preferably used as it summarizes the whole physicochemical and bacteriological properties of a drinking water sample into a single and simple term. In this study, an evaluation was made for three drinking water treatment plants DWTPs named: Efraz 1, Efraz 2 and Efraz 3 that supply drinking water to Erbil City. The assessment was made by testing thirteen physicochemical and two bacteriological parameters during a long period of (2003 – 2017). It has been found that turbidity, electrical conductivity EC, total alkalinity, total hardness, total coliform and fecal coliform have more influence on drinking water quality. DWQI results showed that the quality of drinking water supplied by the three DWTPs in Erbil City fallen within good level. Except various occasional periods where the quality was varying from good to fair. The quality of the drinking water supply never reached the level of marginal or poor over the time investigated. The applied hierarchical clustering analysis HCA classifies the drinking water dataset into three major clusters, reflecting diverse sources of the physicochemical and bacteriological parameter: natural, agriculture and urban discharges.


Sign in / Sign up

Export Citation Format

Share Document