Integrated control of electric power steering and active suspension systems based on model predictive algorithm

Author(s):  
Qiang Zhao ◽  
Baoquan Zhu ◽  
Yulong Pei ◽  
Na Wang

This paper investigates how to control suspension system and steering system to cooperatively ensure their performance. A model predictive controller is designed for their integrated model, which includes three parts: predictive model, rolling optimization and online correction. Repeated online optimization is based on actual output feedback information, real-time consideration of the impact of uncertainties, and timely correction. The simulation results show that the integrated model predictive control effect of steering system and suspension system is better than those of non-integrated passive control and integrated optimal control. The ride comfort, handling stability and driving safety of the vehicle are all improved with the integrated model predictive control.

Author(s):  
Yue Ren ◽  
Ling Zheng ◽  
Wei Yang ◽  
Yinong Li

Adaptive cruise control, as a driver assistant system for vehicles, can adjust the vehicle speed to keep the appropriate distance from other vehicles, which highly increases the driving safety and driver’s comfort. This paper presents hierarchical adaptive cruise control system that could balance the driver’s expectation, collision risk, and ride comfort. In the adaptive cruise control structure, there are two controllers to achieve the function. The one is the upper controller which is established based on the model predictive control theory and used to calculate the desirable longitudinal acceleration. The collision risk is described by the Gaussian distribution. A quadratic cost function for model predictive control is formulated based on the potential field method through the contradictions between the tracking error, collision risk, and the longitudinal ride comfort. The other one is the lower optimal torque vectoring controller which is constructed based on the vehicle longitudinal dynamics. And it can generate the desired acceleration considering the anti-wheel slip limitations. Several simulations under different road conditions demonstrate that the proposed adaptive cruise control has significant performance on balancing the tracking ability, collision avoidance, ride comfort, and adhesion utilization. It also maintains vehicle stability for the complex road conditions.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985978
Author(s):  
Ja-Ho Seo ◽  
Kwang-Seok Oh ◽  
Hong-Jun Noh

All-terrain cranes with multi-axles have large inertia and long distances between the axles that lead to a slower dynamic response than normal vehicles. This has a significant effect on the dynamic behavior and steering performance of the crane. Therefore, the purpose of this study is to develop an optimal steering control algorithm with a reduced driver steering effort for an all-terrain crane and to evaluate the performance of the algorithm. For this, a model predictive control technique was applied to an all-terrain crane, and a steering control algorithm for the crane was proposed that could reduce the driver’s steering effort. The steering performances of the existing steering system and the steering system applied with the newly developed algorithm were compared using MATLAB/Simulink and ADAMS with a human driver model for reasonable performance evaluation. The simulation was performed with both a double lane change scenario and a curved-path scenario that are expected to happen in road-steering mode.


2020 ◽  
Vol 10 (15) ◽  
pp. 5220 ◽  
Author(s):  
Jianjun Wang ◽  
Jingyi Zhao ◽  
Wenlei Li ◽  
Xing Jia ◽  
Peng Wei

In order to ensure the ride comfort of a hydraulic transport vehicle in transportation, it is important to account for the effects of the suspension system. In this paper, an improved hydraulic suspension system based on a reasonable setting of the accumulator was proposed for a heavy hydraulic transport vehicle. The hydraulic transport vehicle was a multi-degree nonlinear system, and the establishment of an appropriate vehicle dynamical model was the basis for the improvement of the hydraulic suspension system. The hydraulic suspension system was analyzed, and a mathematical model of the hydraulic suspension system with accumulator established and then analyzed. The results revealed that installing the appropriate accumulator can absorb the impact pressure on the vehicle, while a hydraulic suspension system with an accumulator can be designed. Further, it was proved that a reasonable setting for the accumulator can reduce the impact force on the transport vehicle through simulation, and the optimal accumulator parameters can be obtained. Finally, an experiment in the field was set up and carried out, and the experimental results presented to prove the viability of the proposed method.


Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 77 ◽  
Author(s):  
Erik Enders ◽  
Georg Burkhard ◽  
Nathan Munzinger

Active suspension systems help to deliver superior ride comfort and can be used to resolve the objective conflict between ride comfort and road-holding. Currently, there exists no method for analyzing the influence of actuator limitations, such as maximum force and maximum rate of change, on the achievable ride comfort. This research paper presents a method that is capable of doing this. It uses model predictive control to eliminate the influence of feedback controller performance and to integrate both actuator limitations and necessary constraints on dynamic wheel-load variation and suspension travel. Various scenarios are simulated, such as driving over a speed bump and inner city driving, as well as driving on a country road and motorway driving, using a state-of-the-art quarter-car model, parameterized for a luxury class vehicle. It is analyzed how comfort, or in one scenario road-holding, can be improved with consideration for the actuator limitations. The results indicate that actuator rate limitation has a strong influence on vertical vehicle dynamics control system performance, and that relatively small maximum forces of around 1000 to 2000 N are sufficient to successfully reject disturbances from road irregularities, provided the actuator is capable of supplying the forces at a sufficiently high rate of change.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Yi Zhang ◽  
Xiangjie Liu ◽  
Yujia Yan

Reliable load frequency (LFC) control is crucial to the operation and design of modern electric power systems. Considering the LFC problem of a four-area interconnected power system with wind turbines, this paper presents a distributed model predictive control (DMPC) based on coordination scheme. The proposed algorithm solves a series of local optimization problems to minimize a performance objective for each control area. The scheme incorporates the two critical nonlinear constraints, for example, the generation rate constraint (GRC) and the valve limit, into convex optimization problems. Furthermore, the algorithm reduces the impact on the randomness and intermittence of wind turbine effectively. A performance comparison between the proposed controller with and that without the participation of the wind turbines is carried out. Good performance is obtained in the presence of power system nonlinearities due to the governors and turbines constraints and load change disturbances.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Liwei Ni ◽  
Fangwu Ma ◽  
Linhe Ge ◽  
Liang Wu

Abstract This paper presents a novel solution for the posture control and ride comfort between the proposed wheel-legged robot (four wheel-legged robot (FWLR)) and the unstructured terrain by means of an actively passively transformable suspension system. Unlike most traditional robots, each leg of FWLR is independent of each other with a spring-damping system (passive system) is connected in series with an actuator (active system), so the posture control and ride comfort in complex terrain can be realized by the combination between active and passive systems. To verify the performance of posture control in complex terrain, a prototype and complex terrain are established first, then a posture control model, algorithm, and controller considering the suspension system are proposed and verified by the comparison between co-simulation and experiment, the results showed that the pitch angle and roll angles in complex terrain can be controlled. To show the impact of the actively passively transformable suspension system on ride comfort (vibration isolation performance), different dynamic models with different degree-of–freedom (DOF) are established, the co-simulation results showed that the passive system and active posture control system can also effectively improve the ride comfort of FWLR in complex terrain. The research results of this paper have important reference significance and practical value for enriching and developing the mechanism design and theoretical research of wheel-legged robot and promoting the engineering application of all-terrain robot.


Sign in / Sign up

Export Citation Format

Share Document