Torque density maximization of vernier machine by using series compensation

2020 ◽  
Vol 64 (1-4) ◽  
pp. 245-253
Author(s):  
Abdur Rehman ◽  
Byungtaek Kim

This paper deals with the design of SPM vernier machine with high slots/pole/phase q, to get higher torque density as well as improved power factor by applying the concept of series compensation. The torque density of a vernier machine can be enhanced by increasing the number of slots/pole/phase q, but as q increases the drastic increase in the reactance makes the power factor even worse. Therefore, it is general to choose low q, even if higher torque can be obtained with higher q. In this study, the idea of series compensation is applied to get vernier machine with high q without the low power factor problem. Series compensation is performed by supplying the desired reactive power to the machine from an additional inverter with a floating capacitor. To validate the theoretical analyses, three SPM vernier machines with different q (1 ∼ 3) are designed and then analyzed by using FEM.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1527
Author(s):  
R. Senthil Kumar ◽  
K. Mohana Sundaram ◽  
K. S. Tamilselvan

The extensive usage of power electronic components creates harmonics in the voltage and current, because of which, the quality of delivered power gets affected. Therefore, it is essential to improve the quality of power, as we reveal in this paper. The problems of load voltage, source current, and power factors are mitigated by utilizing the unified power flow controller (UPFC), in which a combination of series and shunt converters are combined through a DC-link capacitor. To retain the link voltage and to maximize the delivered power, a PV module is introduced with a high gain converter, named the switched clamped diode boost (SCDB) converter, in which the grey wolf optimization (GWO) algorithm is instigated for tracking the maximum power. To retain the link-voltage of the capacitor, the artificial neural network (ANN) is implemented. A proper control of UPFC is highly essential, which is achieved by the reference current generation with the aid of a hybrid algorithm. A genetic algorithm, hybridized with the radial basis function neural network (RBFNN), is utilized for the generation of a switching sequence, and the generated pulse has been given to both the series and shunt converters through the PWM generator. Thus, the source current and load voltage harmonics are mitigated with reactive power compensation, which results in attaining a unity power factor. The projected methodology is simulated by MATLAB and it is perceived that the total harmonic distortion (THD) of 0.84% is attained, with almost a unity power factor, and this is validated with FPGA Spartan 6E hardware.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3201
Author(s):  
Henry Bory ◽  
Jose L. Martin ◽  
Iñigo Martinez de Alegria ◽  
Luis Vazquez

Micro-hydro power plants (μHPPs) are a major energy source in grid-isolated zones because they do not require reservoirs and dams to be built. μHPPs operate in a standalone mode, but a continuously varying load generates voltage unbalances and frequency fluctuations which can cause long-term damage to plant components. One method of frequency regulation is the use of alternating current-alternating current (AC-AC) converters as an electronic load controller (ELC). The disadvantage of AC-AC converters is reactive power consumption with the associated decrease in both the power factor and the capacity of the alternator to deliver current. To avoid this disadvantage, we proposed two rectifier topologies combined with symmetrical switching. However, the performance of the frequency regulation loop with each topology remains unknown. Therefore, the objective of this work was to evaluate the performance of the frequency regulation loop when each topology, with a symmetrical switching form, was inserted. A MATLAB® model was implemented to simulate the frequency loop. The results from a μHPP case study in a small Cuban rural community called ‘Los Gallegos’ showed that the performance of the frequency regulation loop using the proposed topologies satisfied the standard frequency regulation and increased both the power factor and current delivery capabilities of the alternator.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 234
Author(s):  
Karthik Subramanian ◽  
Shantam Tandon

Power factor is the ratio of the real current or voltage received by a load to the root mean square (rms) value of the current or voltage that was supposed to be acquired by the same load. The fact that the two become different is due to the presence of reactive power in the circuit which gets dissipated.Improving the power factor means reducing the phase difference between voltage and current. Since majority of the loads are of inductive nature, they require some amount of reactive power for them to function. Therefore, for the better use of electrical appliances with minimum amount of electrical consumption, the power factor should necessarily be increased and should be brought near to 1. This can be easily done by the help of Automatic Power Factor Correction Capacitors and Active filters.  


2014 ◽  
Vol 533 ◽  
pp. 397-400 ◽  
Author(s):  
Chi Jui Wu ◽  
Yu Wei Liu ◽  
Shou Chien Huang

To modify the power factor and balance the three-phase currents simultaneously, this paper proposes the instantaneous compensator to calculate the compensation current. The instantaneous compensator utilizes two-dimensional instantaneous space vector and setting the active power as a constant for each cycle which can improve power quality effectively. Moreover, the instantaneous compensator requires an independent power source, whose capacity can be reduce by using a static var compensator (SVC). An SVC does not interfere with the capability of the instantaneous compensator. Field measurement data were analyzed. Simulation results confirmed the feasibility of correcting the power factor and balancing load currents simultaneously using the proposed method.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7510
Author(s):  
Akinyemi Ayodeji Stephen ◽  
Kabeya Musasa ◽  
Innocent Ewean Davidson

Renewable Distributed Generation (RDG), when connected to a Distribution Network (DN), suffers from power quality issues because of the distorted currents drawn from the loads connected to the network over generation of active power injection at the Point of Common Coupling (PCC). This research paper presents the voltage rise regulation strategy at the PCC to enhance power quality and continuous operation of RDG, such as Photovoltaic Arrays (PVAs) connected to a DN. If the PCC voltage is not regulated, the penetration levels of the renewable energy integration to a DN will be limited or may be ultimately disconnected in the case of a voltage rise issue. The network is maintained in both unity power factor and voltage regulation mode, depending on the condition of the voltage fluctuation occurrences at the PCC. The research investigation shows that variation in the consumer’s loads (reduction) causes an increase in the power generated from the PVA, resulting in an increase in the grid current amplitude, reduction in the voltage of the feeder impedance and an increase in the phase voltage amplitude at the PCC. When the system is undergoing unity power factor mode, PCC voltage amplitude tends to rises with the loads. Its phase voltage amplitude rises above an acceptable range with no-loads which are not in agreement, as specified in the IEEE-1547 and Southern Africa grid code prerequisite. Incremental Conduction with Integral Regulator bases (IC + PI) are employed to access and regulate PVA generation, while the unwanted grid current distortions are attenuated from the network using an in-loop second order integral filtering circuit algorithm. Hence, the voltage rise at the PCC is mitigated through the generation of positive reactive power to the grid from the Distribution Static Compensator (DSTATCOM), thereby regulating the phase voltage. The simulation study is carried out in a MATLAB/Simulink environment for PVA performance.


A reliable grid connected Photovoltaic (PV) system require effective control schemes for efficient use of solar energy. This paper presents a three-phase grid tied PV system with decoupled real and reactive power control to achieve desired power factor with Maximum Power Point Tracking (MPPT) controller to get maximum solar energy. The synchronous reference frame (dq) control along with decoupling concept is used to control the DC-AC inverter output, while the Phase Locked Loop (PLL) synchronization technique is used to monitor and synchronize the voltage and current at the grid side. The DC-DC converter with Incremental Conductance (InC) based MPPT model is also designed in this paper due to better accuracy compared to Perturb & Observe (P&O) algorithm. The simulation is performed in MATLAB/SIMULINK and a 31.5 kW PV system is modelled to get 30 kW power with the help of MPPT at Standard Test Conditions (STC). Any power factor value between 0.85 lagging to 0.9 leading can be obtained by changingreference q current in this inverter control strategy. The simulation results show that the change of reactive powerdoes not affecttheactive power values of the system, which verifies the effectiveness of the decoupled control strategy of the inverter.


Sign in / Sign up

Export Citation Format

Share Document