A complete robust control network based on skewed temporal logic

2021 ◽  
pp. 1-14
Author(s):  
Liuxing Li

The robust control network for nonlinear large-scale systems with parametric uncertainties also considers the uncertain robust stabilization problem for controlled networks. In heterogeneous populations, hybrid regression models are the most important statistical analysis tools. To aim of the study is to conduct a more in-depth analysis of the existing completive robust control networks relying on biased temporal logic. Compared with the symmetric distribution, the skewed distribution can obtain accurate and effective information. Therefore, a time-series logic model under skewed distribution is proposed. The temporal logic under skew state is applied to describe the normative language of fuzzy systems. Firstly, the mixed nonlinear regression model under skewed distribution data is introduced to test whether the temporal logic formula can be realized under the skew state. Secondly, through the method of reduction, the control flow interval logic CFITL is studied, and the time series logic sequence is used to describe the measurement output loss. The sufficient conditions for the control network system to satisfy the exponential stability and H ∞ performance index are given. The linear matrix inequality obtains the completeness control network to be designed, and the effectiveness of the proposed method is verified by stochastic simulation experiments. Finally, the method is verified to be practical and feasible based on actual data. The maximum recognition rates of nearest neighbor classification, nearest subspace classification and biased distribution temporal logic classification reached 0.9019, 0.9622 and 0.9304, respectively.

Author(s):  
Cheung-Chieh Ku ◽  
Guan-Wei Chen

This paper investigates a delay-dependent robust control problem of discrete-time uncertain stochastic systems with delays. The uncertainty considered in this paper is time-varying but norm-bounded, and the delays are considered as interval time-varying case for both state and input. According to the considerations of uncertainty, stochastic behavior, and time delays, the problem considered in this paper is more general than the existing works for uncertain stochastic systems. Via the proposed Lyapunov–Krasovskii function, some sufficient conditions are derived into the extended linear matrix inequality form. Moreover, Jensen inequality and free matrix equation are employed to reduce conservatism of those conditions. Through using the proposed design method, a gain-scheduled controller is designed to guarantee asymptotical stability of uncertain stochastic systems in the sense of mean square. Finally, two numerical examples are provided to demonstrate applicability and effectiveness of the proposed design method.


2013 ◽  
Vol 7 (1) ◽  
pp. 33-38
Author(s):  
Junfeng Wu ◽  
Qiang Wang ◽  
Shengda Wang

By using the Lyapunov second method, the robust control and robust optimal control for the gas tungsten arc welding dynamic process whose underlying continuous-time systems are subjected to structured uncertainties are discussed in time-domain. As results, some sufficient conditions of robust stability and the corresponding robust control laws are derived. All these results are designed by solving a class of linear matrix inequalities (LMIs) and a class of dynamic optimization problem with LMIs constraints respectively. An example adapted under some experimental conditions in the dynamic process of gas tungsten arc welding system in which the controlled variable is the backside width and controlling variable welding speed, is worked out to illustrate the proposed results. It is shown in the paper that the sampling period is the crucial design parameter


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xi Hu ◽  
Wei Guo

Wireless Software Defined Network (WSDN) presents a new network architecture where the control plane of forwarding devices is shifted to a centralized controller. It is critical to maximize network throughput and keep the network stable during congestion control. However, stability control is insufficient to achieve these aims in the presence of delay and interference. In this paper, we adopt robust control to tackle these problems. Firstly, an efficient weighted scheduling scheme is proposed to maximize the network throughput. Secondly, a robust control model is presented, which is analyzed by Lyapunov-Krasovskii functionals. The sufficient conditions are formulated by Linear Matrix Inequalities (LMIs). Finally, a numerical simulation is conducted to indicate the effectiveness of the proposed scheme.


Author(s):  
Kho Hie Kwee ◽  
Hardiansyah .

This paper addresses the design problem of robust H2 output feedback controller design for damping power system oscillations. Sufficient conditions for the existence of output feedback controllers with norm-bounded parameter uncertainties are given in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMI constraints is formulated to design the output feedback controller which minimizes an upper bound on the worst-case H2 norm for a range of admissible plant perturbations. The technique is illustrated with applications to the design of stabilizer for a single-machine infinite-bus (SMIB) power system. The LMI based control ensures adequate damping for widely varying system operating.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1794
Author(s):  
Hilmy Awad ◽  
Ehab H. E. Bayoumi ◽  
Hisham M. Soliman ◽  
Michele De Santis

This paper introduces a new ellipsoidal-based tracker design to control a grid-connected hybrid direct current/alternating current (DC/AC) microgrid (MG). The proposed controller is robust against both parameters and load variations. The studied hybrid MG is modelled as a nonlinear dynamical system. A linearized model around an operating point is developed. The parameter changes are modelled as norm-bounded uncertainties. We apply the new extended version of the attractive (or invariant) ellipsoid for this tracking problem. Convex optimization is used to obtain the region’s minimal size where the tracking error between the state trajectories and the reference states converges. The sufficient conditions for stability are derived and solved based on linear matrix inequalities (LMIs). The proposed controller’s validity is shown via simulating the hybrid MG with various operational scenarios. In each scenario, the performance of the controller is compared with a recently proposed sliding mode controller. The comparison clearly illustrates the superiority of the developed controller in terms of transient and steady-state responses.


Author(s):  
Hua-Nv Feng ◽  
Bao-Lin Zhang ◽  
Yan-Dong Zhao ◽  
Hui Ma ◽  
Hao Su ◽  
...  

Marine structures are inevitably influenced by parametric perturbations as well as multiple external loadings. Among these loadings, earthquake is generally more destructive and unpredictable than others. It is significant to develop effective active control schemes to guarantee the safety, stability, and integrity of marine structures subject to earthquakes and parametric perturbations. In this paper, the problem of networked [Formula: see text] robust damping control is addressed to stabilize a marine structure subject to earthquakes. First, in consideration of perturbations of the structure parameters, an uncertain model of the networked marine structure under earthquakes is presented. Second, a robust networked [Formula: see text] control scheme is presented to suppress seismic responses of the structure. By using stability theory of time-delay systems, several sufficient conditions on robust stability of the networked marine structure system are obtained, and the linear matrix inequality methods are utilized to solve the gain matrix of the controller. Finally, simulation indicates that compared with the traditional robust [Formula: see text] control and the proposed networked [Formula: see text] control, the seismic responses amplitudes of the marine structure under the two controllers are almost the same, while the latter is more economic than the former.


2019 ◽  
Vol 42 (2) ◽  
pp. 330-336
Author(s):  
Dongbing Tong ◽  
Qiaoyu Chen ◽  
Wuneng Zhou ◽  
Yuhua Xu

This paper proposes the [Formula: see text]-matrix method to achieve state estimation in Markov switched neural networks with Lévy noise, and the method is very distinct from the linear matrix inequality technique. Meanwhile, in light of the Lyapunov stability theory, some sufficient conditions of the exponential stability are derived for delayed neural networks, and the adaptive update law is obtained. An example verifies the condition of state estimation and confirms the effectiveness of results.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Chuangxia Huang ◽  
Hanfeng Kuang ◽  
Xiaohong Chen ◽  
Fenghua Wen

This paper considers the dynamics of switched cellular neural networks (CNNs) with mixed delays. With the help of the Lyapnnov function combined with the average dwell time method and linear matrix inequalities (LMIs) technique, some novel sufficient conditions on the issue of the uniformly ultimate boundedness, the existence of an attractor, and the globally exponential stability for CNN are given. The provided conditions are expressed in terms of LMI, which can be easily checked by the effective LMI toolbox in Matlab in practice.


Author(s):  
Xia Zhao ◽  
Engang Tian

This paper investigates stability and stabilization of discrete systems with probabilistic nonlinearities and time-varying delay. New characters of the nonlinearities, the probability of the nonlinearities happening between different bounds, are used to build new type of system model, which can help us make a full use of the inner variation information of the nonlinearities. With the help of the new characters, new system model is proposed. Then, sufficient conditions for the mean square stability of the system can be obtained by using the Lyapunov functional approach and linear matrix inequalities technique. An example is proposed to illustrate the efficiency of the proposed method.


2021 ◽  
pp. 107754632110069
Author(s):  
Parvin Mahmoudabadi ◽  
Mahsan Tavakoli-Kakhki

In this article, a Takagi–Sugeno fuzzy model is applied to deal with the problem of observer-based control design for nonlinear time-delayed systems with fractional-order [Formula: see text]. By applying the Lyapunov–Krasovskii method, a fuzzy observer–based controller is established to stabilize the time-delayed fractional-order Takagi–Sugeno fuzzy model. Also, the problem of disturbance rejection for the addressed systems is studied via the state-feedback method in the form of a parallel distributed compensation approach. Furthermore, sufficient conditions for the existence of state-feedback gains and observer gains are achieved in the terms of linear matrix inequalities. Finally, two numerical examples are simulated for the validation of the presented methods.


Sign in / Sign up

Export Citation Format

Share Document