The Safety Factor for Neuromuscular Transmission: Effects of Dimethylsulphoxide, Cannabinoids and Synaptic Homeostasis

2021 ◽  
pp. 1-14
Author(s):  
Gianmaria Lorenzo Odierna ◽  
William Donald Phillips

Background In myasthenia gravis, impaired postsynaptic sensitivity to acetylcholine results in failure of neuromuscular transmission and fatiguing muscle weakness. Objective Develop an ex vivo muscle contraction assay to test cannabinoids and other substances that might act on the myasthenic neuromuscular junction to restore control of the muscle. Methods Tubocurarine was added to an ex vivo, mouse phrenic nerve-hemidiaphragm muscle preparation to reduce acetylcholine sensitivity. This produced a myasthenia-like decrement in twitch force during a train of 10 nerve impulses (3 / sec). Endplate potential (EPP) recordings were used to confirm and extend the findings. Results Surprisingly, addition to the bath of dimethylsulphoxide (DMSO), at concentrations as low as 0.1%(v/v), partially reversed the decrement in nerve-evoked force. Intracellular electrophysiology, conducted in the presence of tubocurarine, showed that DMSO increased the amplitudes of both the spontaneous miniature EPP (MEPP) and the (nerve-evoked) EPP. In the absence of tubocurarine (synaptic potentials at physiological levels), an adaptive fall in quantal content negated the DMSO-induced rise in EPP amplitude. The effects of cannabinoid receptor agonists (solubilized with DMSO) in the contraction assay do not support their further exploration as useful therapeutic agents for myasthenia gravis. CP 55,940 (a dual agonist for cannabinoid receptor types 1 and 2) reversed the beneficial effects of DMSO. Conclusions: We demonstrate a powerful effect of DMSO upon quantal amplitude that might mislead pharmacological studies of synaptic function wherever DMSO is used as a drug vehicle. Our results also show that compounds targeting impaired neuromuscular transmission should be tested under myasthenic-like conditions, so as to avoid confounding effects of synaptic homeostasis.

2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


2019 ◽  
Vol 18 (3) ◽  
pp. 232-238 ◽  
Author(s):  
Emanuela Onesti ◽  
Vittorio Frasca ◽  
Marco Ceccanti ◽  
Giorgio Tartaglia ◽  
Maria Cristina Gori ◽  
...  

Background: The cannabinoid system may be involved in the humoral mechanisms at the neuromuscular junction. Ultramicronized-palmitoylethanolamide (μm-PEA) has recently been shown to reduce the desensitization of Acetylcholine (ACh)-evoked currents in denervated patients modifying the stability of ACh receptor (AChR) function. <p> Objective: To analyze the possible beneficial effects of μm-PEA in patients with myasthenia gravis (MG) on muscular fatigue and neurophysiological changes. <p> Method: The duration of this open pilot study, which included an intra-individual control, was three weeks. Each patient was assigned to a 1-week treatment period with μm-PEA 600 mg twice a day. A neurophysiological examination based on repetitive nerve stimulation (RNS) of the masseteric and the axillary nerves was performed, and the quantitative MG (QMG) score was calculated in 22 MG patients every week in a three-week follow-up period. AChR antibody titer was investigated to analyze a possible immunomodulatory effect of PEA in MG patients. <p> Results: PEA had a significant effect on the QMG score (p=0.03418) and on RNS of the masseteric nerve (p=0.01763), thus indicating that PEA reduces the level of disability and decremental muscle response. Antibody titers did not change significantly after treatment. <p> Conclusion: According to our observations, μm-PEA as an add-on therapy could improve muscular response to fatigue in MG. The possible modulation of AChR currents as a means of eliciting a direct effect from PEA on the conformation of ACh receptors should be investigated. The co-role of cytokines also warrants an analysis. Given the rapidity and reversibility of the response, we suppose that PEA acts directly on AChR, though further studies are needed to confirm this hypothesis.


2021 ◽  
Vol 6 (2) ◽  
pp. 48
Author(s):  
Elisa Innocenzi ◽  
Ida Cariati ◽  
Emanuela De Domenico ◽  
Erika Tiberi ◽  
Giovanna D’Arcangelo ◽  
...  

Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and β neurexins, from two independent promoters. Moreover, each Nrxns gene (1–3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1–3 AS at splice site 4 (SS4) both in α and β isoforms, inducing a switch from exon-excluded isoforms (SS4−) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.


2021 ◽  
Vol 11 (8) ◽  
pp. 1035
Author(s):  
Maria Pia Giannoccaro ◽  
Patrizia Avoni ◽  
Rocco Liguori

The neuromuscular junction (NMJ) is the target of a variety of immune-mediated disorders, usually classified as presynaptic and postsynaptic, according to the site of the antigenic target and consequently of the neuromuscular transmission alteration. Although less common than the classical autoimmune postsynaptic myasthenia gravis, presynaptic disorders are important to recognize due to the frequent association with cancer. Lambert Eaton myasthenic syndrome is due to a presynaptic failure to release acetylcholine, caused by antibodies to the presynaptic voltage-gated calcium channels. Acquired neuromyotonia is a condition characterized by nerve hyperexcitability often due to the presence of antibodies against proteins associated with voltage-gated potassium channels. This review will focus on the recent developments in the autoimmune presynaptic disorders of the NMJ.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 748
Author(s):  
Elisa Wirthgen ◽  
Melanie Hornschuh ◽  
Ida Maria Wrobel ◽  
Christian Manteuffel ◽  
Jan Däbritz

Ex vivo culture conditions during the manufacturing process impact the therapeutic effect of cell-based products. Mimicking blood flow during ex vivo culture of monocytes has beneficial effects by preserving their migratory ability. However, the effects of shear flow on the inflammatory response have not been studied so far. Hence, the present study investigates the effects of shear flow on both blood-derived naïve and activated monocytes. The activation of monocytes was experimentally induced by granulocyte-macrophage colony-stimulating factor (GM-CSF), which acts as a pro-survival and growth factor on monocytes with a potential role in inflammation. Monocytes were cultured under dynamic (=shear flow) or static conditions while preventing monocytes' adherence by using cell-repellent surfaces to avoid adhesion-induced differentiation. After cultivation (40 h), cell size, viability, and cytokine secretion were evaluated, and the cells were further applied to functional tests on their migratory capacity, adherence, and metabolic activity. Our results demonstrate that the application of shear flow resulted in a decreased pro-inflammatory signaling concurrent with increased secretion of the anti-inflammatory cytokine IL-10 and increased migratory capacity. These features may improve the efficacy of monocyte-based therapeutic products as both the unwanted inflammatory signaling in blood circulation and the loss of migratory ability will be prevented.


2012 ◽  
Vol 245 (1-2) ◽  
pp. 75-78 ◽  
Author(s):  
Shuuichi Mori ◽  
Masahiko Kishi ◽  
Sachiho Kubo ◽  
Takuyu Akiyoshi ◽  
Shigeru Yamada ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 263
Author(s):  
Andrea Toschi ◽  
Giorgia Galiazzo ◽  
Andrea Piva ◽  
Claudio Tagliavia ◽  
Gemma Mazzuoli-Weber ◽  
...  

An important piece of evidence has shown that molecules acting on cannabinoid receptors influence gastrointestinal motility and induce beneficial effects on gastrointestinal inflammation and visceral pain. The aim of this investigation was to immunohistochemically localize the distribution of canonical cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) and the cannabinoid-related receptors transient potential vanilloid receptor 1 (TRPV1), transient potential ankyrin receptor 1 (TRPA1), and serotonin receptor 5-HT1a (5-HT1aR) in the myenteric plexus (MP) of pig ileum. CB1R, TRPV1, TRPA1, and 5-HT1aR were expressed, with different intensities in the cytoplasm of MP neurons. For each receptor, the proportions of the immunoreactive neurons were evaluated using the anti-HuC/HuD antibody. These receptors were also localized on nerve fibers (CB1R, TRPA1), smooth muscle cells of tunica muscularis (CB1R, 5-HT1aR), and endothelial cells of blood vessels (TRPV1, TRPA1, 5-HT1aR). The nerve varicosities were also found to be immunoreactive for both TRPV1 and 5-HT1aR. No immunoreactivity was documented for CB2R. Cannabinoid and cannabinoid-related receptors herein investigated showed a wide distribution in the enteric neurons and nerve fibers of the pig MP. These results could provide an anatomical basis for additional research, supporting the therapeutic use of cannabinoid receptor agonists in relieving motility disorders in porcine enteropathies.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-4
Author(s):  

A review of the current literature concludes that the recreational marijuana legislation did not reveal significant negative consequences on the use and abuse of marijuana and other substances but might even have exerted some beneficial effects.


1976 ◽  
Vol 144 (3) ◽  
pp. 739-753 ◽  
Author(s):  
J M Lindstrom ◽  
A G Engel ◽  
M E Seybold ◽  
V A Lennon ◽  
E H Lambert

Passive transfer of experimental autoimmune myasthenia gravis (EAMG) was achieved using the gamma globulin fraction and purified IgG from sera of rats immunized with Electrophus electricus (eel) acetylcholine receptor (AChR). This demonstrates the critical role of anti-AChR antibodies in impairing neuromuscular transmission in EAMG. Passive transfer of anti-AChR antibodies from rats with chronic EAMG induced signs of the acute phase of EAMG in normal recipient rats, including invasion of the motor end-plate region by mononuclear inflammatory cells. Clinical, eletrophysiological, histological, and biochemical signs of acute EAMG were observed by 24 h after antibody transfer. Recipient rats developed profound weakness and fatigability, and the posture characteristic of EAMG. Striking weight loss was attributable to dehydration. Recipient rats showed large decreases in amplitude of muscle responses to motor nerve stimulation, and repetitive nerve stimulation induced characteristic decrementing responses. End-plate potentials were not detectable in many muscle fibers, and the amplitudes of miniature end-plate potentials were reduced in the others. Passively transferred EAMG more severely affected the forearm muscles than diaphragm muscles, though neuromuscular transmission was impaired and curare sensitivity was increased in both muscles. Some AChR extracted from the muscles of rats with passively transferred EAMG was found to be complexed with antibody, and the total yield of AChR per rat was decreased. The quantitative decrease in AChR approximately paralleled in time the course of clinical and electrophysiological signs. The amount of AChR increased to normal levels and beyond at the time neuromuscular transmission was improving. The excess of AChR extractable from muscle as the serum antibody level decreased probably represented extrajunctional receptors formed in response to functional denervation caused by phagocytosis of the postsynaptic membrane by macrophages. The amount of antibody required to passively transfer EAMG was less than required to bind all AChR molecules in a rat's musculature. The effectiveness of samll amounts of antibody was probably amplified by the activation of complement and by the destruction of large areas of postsynaptic membrane by phagocytic cells. A self-sustaining autoimmune response to AChR was not provoked in animals with passively transferred EAMG.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Gilles Ouanounou ◽  
Gérard Baux ◽  
Thierry Bal

Excitability differs among muscle fibers and undergoes continuous changes during development and growth, yet the neuromuscular synapse maintains a remarkable fidelity of execution. Here we show in two evolutionarily distant vertebrates (Xenopus laevis cell culture and mouse nerve-muscle ex-vivo) that the skeletal muscle cell constantly senses, through two identified calcium signals, synaptic events and their efficacy in eliciting spikes. These sensors trigger retrograde signal(s) that control presynaptic neurotransmitter release, resulting in synaptic potentiation or depression. In the absence of spikes, synaptic events trigger potentiation. Once the synapse is sufficiently strong to initiate spiking, the occurrence of these spikes activates a negative retrograde feedback. These opposing signals dynamically balance the synapse in order to continuously adjust neurotransmitter release to a level matching current muscle cell excitability.


Sign in / Sign up

Export Citation Format

Share Document