scholarly journals Pre Clinical Assessment of AAVrh74.MCK.GNE Viral Vector Therapeutic Potential: Robust Activity Despite Lack of Consistent Animal Model for GNE Myopathy

2021 ◽  
pp. 1-14
Author(s):  
Stella Mitrani-Rosenbaum ◽  
Lena Yakovlev ◽  
Michal Becker Cohen ◽  
Zohar Argov ◽  
Yakov Fellig ◽  
...  

Background: GNE myopathy is a unique adult onset rare neuromuscular disease caused by recessive mutations in the GNE gene. The pathophysiological mechanism of this disorder is not well understood and to date, there is no available therapy for this debilitating disease. We have previously established proof of concept that AAV based gene therapy can effectively deliver the wild type human GNE into cultured muscle cells from human patients and in mice, using a CMV promoter driven human wild type GNE plasmid delivered through an adeno associated virus (AAV8) based platform. Objective: In the present study we have generated a muscle specific GNE construct, driven by the MCK promoter and packaged with the AAVrh74 serotype for efficacy evaluation in an animal model of GNE Myopathy. Methods: The viral vector was systemically delivered at 2 doses to two age groups of a Gne–/– hGNED207V Tg mouse described as a preclinical model of GNE Myopathy, and treatment was monitored for long term efficacy. Results: In spite of the fact that the full described characteristics of the preclinical model could not be reproduced, the systemic injection of the rAAVrh74.MCK.GNE viral vector resulted in a long term presence and expression of human wt GNE in the murine muscles and in some improvements of their mild phenotype. The Gne–/– hGNED207V Tg mice are smaller from birth, but cannot be differentiated from littermates by muscle function (grip strength and Rotarod) and their muscle histology is normal, even at advanced age. Conclusions: The rAAVrh74.MCK.GNE vector is a robust tool for the development of GNE Myopathy therapies that supply the intact GNE. However, there is still no reliable animal model to fully assess its efficacy since the previously developed Gne–/– hGNED207V Tg mice do not present disease characteristics.

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 656
Author(s):  
Yung-An Huang ◽  
Jeng-Chang Chen ◽  
Chih-Ching Wu ◽  
Chia-Wei Hsu ◽  
Albert Min-Shan Ko ◽  
...  

Asthma is a chronic respiratory inflammatory disease. Patients usually suffer long-term symptoms and high medical expenses. Extracellular ATP (eATP) has been identified as a danger signal in innate immunity and serves as a potent inflammatory mediator for asthma. Hydrolyzing eATP in lungs might be a potential approach to alleviate asthmatic inflammation. Recombinant adeno-associated virus (rAAV) vectors that contain tissue-specific cap protein have been demonstrated to efficiently transfer exogenous genes into the lung tissues. To test anti-inflammation efficacy of rAAV-mediated CD39 gene transfer, rAAV-CD39 was generated and applied to OVA-mediated asthmatic mice. BALB/c mice were sensitized intraperitoneally and challenged intratracheally with OVA and treated with rAAV-CD39. At the end of procedure, some inflammatory features were examined. rAAV-CD39 treatment downregulated the levels of pulmonary eATP by the rescued expression of CD39. Several asthmatic features, such as airway hyperresponsiveness, eosinophilia, mucin deposition, and IL-5/IL-13 production in the lungs were decreased in the rAAV-CD39-treated mice. Reduced IL-5/IL-13 production and increased frequency of CD4+FoxP3+ regulatory T cells were detected in draining lymph nodes of rAAV-CD39 treated mice. This evidence suggested that rAAV-mediated CD39 gene transfer attenuated the asthmatic airway inflammation locally. The results suggest that rAAV-CD39 might have therapeutic potential for asthma.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. LBA-5-LBA-5 ◽  
Author(s):  
Hojun Li ◽  
Virginia Haurigot ◽  
Yannick Doyon ◽  
James Li ◽  
Anand Bhagwat ◽  
...  

Abstract Abstract LBA-5 Inherited hematologic disorders have the potential to be effectively treated by gene therapy, with recent successes reported for several genetic disorders using viral vector-mediated gene transfer (ADA-SCID, NEJM 2009; β-thalassemia, Nature 2010). However, these trials and others illustrate some of the disadvantages and risks of using viral vector-based gene addition strategies, including loss of endogenous gene regulation and random insertion leading to potential for insertional mutagenesis. An alternative approach is gene correction, where in situ correction of a gene mutation allows endogenous gene regulation and decreases risks related to random integration. Gene correction is based on gene targeting, the therapeutic utility of which has historically been limited to mouse embryonic stem cells due to low homologous recombination rates in other cell types. However, a recently developed class of fusion proteins, zinc finger nucleases (ZFNs), have been shown to increase targeting efficiency 2–3 logs by inducing site-specific DNA double strand breaks at the intended targeting site. ZFNs have permitted high efficiency therapeutic gene targeting in a variety of cultured cells previously thought intractable to these processes, but ZFN-mediated gene correction has yet to be successfully achieved in vivo in an animal model of disease. Here we show ZFN-mediated therapeutic gene targeting of a mutated F9 gene in vivo, resulting in phenotypic correction of a mouse model of hemophilia B (HB). We first generated ZFNs targeting intron 1 of the human F9 gene (F9 ZFNs). We hypothesized the F9 ZFNs would mediate insertion of a wild-type F9 exons 2–8 minigene into intron 1 via gene targeting, thus bypassing the 95% of F9 mutations that occur in exons 2–8. We next generated a humanized HB mouse model with a deletion of the mouse F9 gene and knock-in (at the ROSA 26 locus) of a catalytic domain-deleted human F9 mini-gene (hF9mut) transgene. Adeno-associated viral (AAV) vector delivery of the F9 ZFNs to hF9mut mouse liver resulted in cleavage of the intron 1 target site in 45% of hepatocytes. We then generated an AAV donor vector containing a w.t. exons 2–8 insert flanked by arms of homology. Co-delivery of the AAV-ZFN and AAV-donor vectors to neonatal hF9mut mice (n=16) resulted in circulating F.IX levels of 120–350 ng/mL (2-7% of normal), whereas mice receiving AAV-ZFN alone (n=17) or AAV-mock & AAV-donor (n=15) had no detectable F.IX expression (detection limit 15 ng/mL), or <25 ng/mL F.IX, respectively. PCR analysis of liver DNA from ZFN+donor mice demonstrated genomic evidence of gene targeting at a rate of 2–7% of alleles. F.IX expression in ZFN+donor mice was shown to be stable after 5 months, with follow-up ongoing. In addition, there was no loss of expression following partial hepatectomy, which causes loss of expression from non-integrated episomes upon subsequent hepatocyte proliferation. F.IX expression was also shown to be specific, as opposed to resulting from random integration, as mice lacking the hF9mut gene averaged less than 30 ng/mL after receiving AAV-ZFN and AAV-donor. hF.IX RT-PCR on 10 different tissues confirmed liver-specific expression. To assess phenotypic correction, we performed aPTTs on mice that received ZFN+donor or mock+donor, as well as wild-type (WT) mice and HB mice. WT mice averaged 36 seconds, ZFN+donor mice averaged 44 seconds, mock+donor mice averaged 60 seconds, and HB mice averaged 67 seconds. There was no significant difference in aPTT between WT and ZFN+donor, or mock+donor and HB (p = 0.086 and 0.11, respectively). However, the aPTT for ZFN+donor mice was significantly shortened compared to mock+donor mice (p=0.0014), demonstrating phenotypic correction of the defect in clot formation in HB mice. To our knowledge this is the first demonstration of ZFN-driven gene correction in vivo, and the first demonstration of the in vivo use of ZFNs to correct an animal model of human disease. These results establish a novel paradigm for in vivo gene correction as a method for treating inherited hematologic diseases. Disclosures: Doyon: Sangamo Biosciences: Employment. Li:Sangamo Biosciences: Employment. Wong:Sangamo Biosciences: Employment. Paschon:Sangamo Biosciences: Employment. Rebar:Sangamo Biosciences: Employment. Gregory:Sangamo Biosciences: Employment. Holmes:Sangamo: Employment. High:Sangamo Biosciences: Consultancy; Children's Hospital of Philadelphia: Patents & Royalties.


2020 ◽  
Author(s):  
Benoit Gautier ◽  
Helene Hajjar ◽  
Sylvia Soares ◽  
Jade Berthelot ◽  
Marie Deck ◽  
...  

AbstractCharcot-Marie-Tooth disease 1A (CMT1A) results from a duplication of the PMP22 gene leading to an excess of PMP22, a deficit of myelination and an instability of the myelin sheath in peripheral nerves. Patients present with reduced nerve conduction velocity, muscle waste, hand and foot deformations and foot drop walking problems. As gene silencing therapy has been shown to be effective in other monogenic neurological disorders, we evaluated the safety and efficacy of recombinant adeno-associated viral vector serotype 9 (AAV2/9)-based gene therapy for CMT1A. AAV2/9-mediated delivery of eGFP and shRNAs targeting PMP22 mRNA in the sciatic nerve allowed widespread gene expression in myelinating Schwann cells in mouse, rat and nonhuman primate. The treatment restored wild-type PMP22 level, increased myelination and prevented motor and sensory impairment over 12 months in a rat model of CMT1A. Intra-nerve injection limited off-target transduction and immune response to barely detectable levels. A combination of previously characterized human skin biomarkers successfully discriminated treated animals from their untreated littermate controls indicating their potential use as part of outcome measures in future clinical trials. Our results support intra nerve injection of AAV2/9 as an effective strategy for the treatment of CMT1A as well as other demyelinating CMT diseases.


2020 ◽  
Vol 22 (1) ◽  
pp. 20
Author(s):  
Mitchell J. Bartlett ◽  
Omar S. Mabrouk ◽  
Lajos Szabò ◽  
Andrew J. Flores ◽  
Kate L. Parent ◽  
...  

In previous work we evaluated an opioid glycopeptide with mixed μ/δ-opioid receptor agonism that was a congener of leu-enkephalin, MMP-2200. The glycopeptide analogue showed penetration of the blood–brain barrier (BBB) after systemic administration to rats, as well as profound central effects in models of Parkinson’s disease (PD) and levodopa (L-DOPA)-induced dyskinesia (LID). In the present study, we tested the glycopeptide BBI-11008 with selective δ-opioid receptor agonism, an analogue of deltorphin, a peptide secreted from the skin of frogs (genus Phyllomedusa). We tested BBI-11008 for BBB-penetration after intraperitoneal (i.p.) injection and evaluated effects in LID rats. BBI-11008 (10 mg/kg) demonstrated good CNS-penetrance as shown by microdialysis and mass spectrometric analysis, with peak concentration levels of 150 pM in the striatum. While BBI-11008 at both 10 and 20 mg/kg produced no effect on levodopa-induced limb, axial and oral (LAO) abnormal involuntary movements (AIMs), it reduced the levodopa-induced locomotor AIMs by 50% after systemic injection. The N-methyl-D-aspartate receptor antagonist MK-801 reduced levodopa-induced LAO AIMs, but worsened PD symptoms in this model. Co-administration of MMP-2200 had been shown prior to block the MK-801-induced pro-Parkinsonian activity. Interestingly, BBI-11008 was not able to block the pro-Parkinsonian effect of MK-801 in the LID model, further indicating that a balance of mu- and delta-opioid agonism is required for this modulation. In summary, this study illustrates another example of meaningful BBB-penetration of a glycopeptide analogue of a peptide to achieve a central behavioral effect, providing additional evidence for the glycosylation technique as a method to harness therapeutic potential of peptides.


2018 ◽  
Author(s):  
Michael Luzuriaga ◽  
Raymond P. Welch ◽  
Madushani Dharmawardana ◽  
Candace Benjamin ◽  
Shaobo Li ◽  
...  

<div><div><div><p>Vaccines have an innate tendency to lose their structural conformation upon environmental and chemical stressors. A loss in conformation reduces the therapeutic ability to prevent the spread of a pathogen. Herein, we report an in-depth study of zeolitic imidazolate framework-8 (ZIF-8) and its ability to provide protection for a model viral vector against dena- turing conditions. The immunoassay and spectroscopy analysis together demonstrate enhanced thermal and chemical stability to the conformational structure of the encapsulated viral nanoparticle. The long-term biological activity of this virus-ZIF composite was investigated in animal models to further elucidate the integrity of the encapsulated virus, the bio-safety, and immunogenicity of the overall composite. Additionally, histological analysis found no observable tissue damage in the skin or vital organs in mice, following multiple subcutaneous administrations. This study shows that ZIF-based protein composites are strong candidates for improved preservation of proteinaceous drugs, are biocompatible, and capable of controlling the release and adsorption of drugs in vivo.</p></div></div></div>


Author(s):  
Evi Zohar

Continuing the workshop I've given in the WPC Paris (2017), this article elaborates my discussion of the way I interlace Focusing with Differentiation Based Couples Therapy (Megged, 2017) under the systemic view, in order to facilitate processes of change and healing in working with intimate couples. This article presents the theory and rationale of integrating Differentiation (Bowen, 1978; Schnarch, 2009; Megged, 2017) and Focusing (Gendlin, 1981) approaches, and its therapeutic potential in couple's therapy. It is written from the point of view of a practicing professional in order to illustrate the experiential nature and dynamics of the suggested therapeutic path. Differentiation is a key to mutuality. It offers a solution to the central struggle of any long term intimate relationship: balancing two basic life forces - the drive for individuality and the drive for togetherness (Schnarch, 2009). Focusing is a body-oriented process of self-awareness and emotional healing, in which one learns to pay attention to the body and the ‘Felt Sense’, in order to unfold the implicit, keep it in motion at the precise pace it needs for carrying the next step forward (Gendlin, 1996). Combining Focusing and Differentiation perspectives can cultivate the kind of relationship where a conflict can be constructively and successfully held in the inner world of each partner, while taking into consideration the others' well-being. This creates the possibility for two people to build a mutual emotional field, open to changes, permeable and resilient.


2020 ◽  
Vol 06 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Madhu Gupta ◽  
Ramesh K. Goyal

Abstract:: The placenta that maintains and regulates the growth of fetus, consists of various biological treasures nutrients such as cytomedines, vitamins, trace elements, amino acids, peptides, growth factors and other biologically active constituents. Their therapeutic usefulness can well define in the terms of biochemical mechanisms of various components present in it. Biomedical waste derived extract is also a panacea for treatment of various diseases. Placental therapy has been reported specifically to have potent action on recovery of diseases and tissue regeneration. Placental bioactive components and their multi targeting identity prompted us to compile the précised information on placental extract products. However, some findings are needed to be explored by scientific community to prove their clinical potential with clinically significant statistical conclusions. In the light of available information and the usefulness of the placental extract, it is necessary for the development of various formulations for various unmet meet for the treatment as well as access their adverse effects as well as contradictions and precisely evaluated in the short and in the long-term periods.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuko Nitahara-Kasahara ◽  
Mutsuki Kuraoka ◽  
Posadas Herrera Guillermo ◽  
Hiromi Hayashita-Kinoh ◽  
Yasunobu Maruoka ◽  
...  

Abstract Background Duchenne muscular dystrophy (DMD) is an inherited progressive disorder that causes skeletal and cardiac muscle deterioration with chronic inflammation. Dental pulp stem cells (DPSCs) are attractive candidates for cell-based strategies for DMD because of their immunosuppressive properties. Therefore, we hypothesized that systemic treatment with DPSCs might show therapeutic benefits as an anti-inflammatory therapy. Methods To investigate the potential benefits of DPSC transplantation for DMD, we examined disease progression in a DMD animal model, mdx mice, by comparing them with different systemic treatment conditions. The DPSC-treated model, a canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients, also underwent comprehensive analysis, including histopathological findings, muscle function, and locomotor activity. Results We demonstrated a therapeutic strategy for long-term functional recovery in DMD using repeated DPSC administration. DPSC-treated mdx mice and CXMDJ showed no serious adverse events. MRI findings and muscle histology suggested that DPSC treatment downregulated severe inflammation in DMD muscles and demonstrated a milder phenotype after DPSC treatment. DPSC-treated models showed increased recovery in grip-hand strength and improved tetanic force and home cage activity. Interestingly, maintenance of long-term running capability and stabilized cardiac function was also observed in 1-year-old DPSC-treated CXMDJ. Conclusions We developed a novel strategy for the safe and effective transplantation of DPSCs for DMD recovery, which included repeated systemic injection to regulate inflammation at a young age. This is the first report on the efficacy of a systemic DPSC treatment, from which we can propose that DPSCs may play an important role in delaying the DMD disease phenotype.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Rakesh E. Mutha ◽  
Anilkumar U. Tatiya ◽  
Sanjay J. Surana

Abstract Background Natural plants and plant-derived formulations have been used by mankind from the ancient period of time. For the past few years, many investigations elaborated the therapeutic potential of various secondary chemicals present in the plants. Literature revealed that the various secondary metabolites, viz. phenolics and flavonoids, are responsible for a variety of therapeutic action in humans. Main body In the present review, an attempt has been made to compile the exploration of natural phenolic compounds with major emphasis on flavonoids and their therapeutic potential too. Interestingly, long-term intake of many dietary foods (rich in phenolics) proved to be protective against the development and management of diabetes, cancer, osteoporosis, cardiovascular diseases and neurodegenerative diseases, etc. Conclusion This review presents an overview of flavonoid compounds to use them as a potential therapeutic alternative in various diseases and disorders. In addition, the present understanding of phenolics and flavonoids will serve as the basis for the next scientific studies.


Sign in / Sign up

Export Citation Format

Share Document