Security analysis and review of digital signature-based low-cost RFID tag authentication

2014 ◽  
Vol 6 (1) ◽  
pp. 31-49
Author(s):  
Teemu Väisänen ◽  
Matti Ritamäki ◽  
Johan Scholliers ◽  
Sirra Toivonen
2015 ◽  
Vol 2 (2) ◽  
pp. 86-96 ◽  
Author(s):  
M. Zomorrodi ◽  
N.C. Karmakar

The electromagnetic (EM) imaging technique at mm-band 60 GHz is proposed for data encoding purpose in the chipless Radio Frequency Identification (RFID) systems. The fully printable chipless RFID tag comprises tiny conductive EM polarizers to create high cross-polar radar cross-section. Synthetic aperture radar approach is applied for formation of the tag's EM-image and revealing the tag's content. The achieved high data encoding capacity of 2 bits/cm2in this technique based on a fully printable tag is very convincing for many applications. The system immunity to multipath interference, bending effect, and printing inaccuracy suggests huge potentials for low-cost item tagging. Tags are also readable through a tick paper envelop; hence secure identification is provided by the proposed technique.


2007 ◽  
Vol 17 (6) ◽  
pp. 574-582 ◽  
Author(s):  
Nemai C. Karmakar ◽  
Sushim M. Roy ◽  
Stewart Jenvey ◽  
Stevan Preradovic ◽  
Trung D. Vo ◽  
...  
Keyword(s):  
Low Cost ◽  
Rfid Tag ◽  

2014 ◽  
Vol 49 (9) ◽  
pp. 1942-1957 ◽  
Author(s):  
Hadar Dagan ◽  
Aviv Shapira ◽  
Adam Teman ◽  
Anatoli Mordakhay ◽  
Samuel Jameson ◽  
...  
Keyword(s):  
Low Cost ◽  
Rfid Tag ◽  

Chemosensors ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 264
Author(s):  
Florin C. Loghin ◽  
José F. Salmerón ◽  
Paolo Lugli ◽  
Markus Becherer ◽  
Aniello Falco ◽  
...  

In this work, we present a do-it-yourself (DIY) approach for the environmental-friendly fabrication of printed electronic devices and sensors. The setup consists only of an automated handwriting robot and pens filled with silver conductive inks. Here, we thoroughly studied the fabrication technique and different optimized parameters. The best-achieved results were 300 mΩ/sq as sheet resistance with a printing resolution of 200 µm. The optimized parameters were used to manufacture fully functional electronics devices: a capacitive sensor and a RFID tag, essential for the remote reading of the measurements. This technique for printed electronics represents an alternative for fast-prototyping and ultra-low-cost fabrication because of both the cheap equipment required and the minimal waste of materials, which is especially interesting for the development of cost-effective sensors.


2010 ◽  
Vol 98 (9) ◽  
pp. 1593-1600 ◽  
Author(s):  
Rahul Bhattacharyya ◽  
Christian Floerkemeier ◽  
Sanjay Sarma
Keyword(s):  
Low Cost ◽  

2019 ◽  
Vol 2019 ◽  
pp. 1-25 ◽  
Author(s):  
Madiha Khalid ◽  
Umar Mujahid ◽  
Najam-ul-Islam Muhammad

The field of pervasive computing especially the Internet of Things (IoT) network is evolving due to high network speed and increased capacity offered by the 5G communication system. The IoT network identifies each device before giving it access to the network. The RFID system is one of the most prominent enabling technologies for the node identification. Since the communication between the node and the network takes place over an insecure wireless channel, an authentication mechanism is required to avoid the malicious devices from entering the network. This paper presents a brief survey on the authentication protocols along with the prominent cryptanalysis models for the EPC C1G2 RFID systems. A comparative analysis is provided to highlight the common weaknesses of the existing authentication algorithms and to emphasize on the lack of security standardization for the resource constraint IoT network perception layer. This paper is concluded by proposing an ultralightweight protocol that provides Extremely Good Privacy (EGP). The proposed EGP protocol avoids all the pitfalls highlighted by the cryptanalysis of the existing authentication protocols. The incorporation of the novel ultralightweight primitives, Per-XOR (Px) and Inverse Per-XOR (Px-1), makes the protocol messages more robust and irreversible for all types of adversaries. A comprehensive security analysis illustrates that the proposed protocol proves to be highly resistive against all possible attack scenarios and ensures the security optimally.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2535 ◽  
Author(s):  
Zhonghua Ma ◽  
Yanfeng Jiang

A three-dimensional (3D) printable chipless radio frequency identification (RFID) tag, with high density and sensitivity, is proposed and fulfilled on insulator substrates. By printing a rectangular slot ring and designing specific geometry on the substrate, the printed structure shows high sensitivity in a resonant manner, with the benefits of high density and low cost. Considering the multiple rectangular rings with different sizes in a concentric distribution, a bit coding sequence can be observed in frequency spectra because of the corresponding different resonant frequencies aroused by the printed slots. In this way, the 3D printable chipless RFID tag can be fulfilled by adopting the structure of the rectangular slot ring on the insulated substrates. The main characteristics of the designed rectangular slot rings are verified on both flexible and solid substrates. A 12-bit chipless tag based on the slot ring structures is designed and implemented. The simulation and experiment results show good agreement on its characteristics. The frequency response reveals the fact that the 2th, 3th and 4th harmonic do not exist, which is a unique merit for improving the encoding capacity and the sensitivity of the corresponding reader. The electric field direction of the electromagnetic wave of the reader excitation tag is demonstrated to be wide, up to 90° on the tag horizontal plane, 30° on the vertical direction.


Sign in / Sign up

Export Citation Format

Share Document