Effects of head orientation and lateral body tilt on egocentric coding: Cognitive and sensory-motor accuracy

2006 ◽  
Vol 16 (3) ◽  
pp. 93-103
Author(s):  
J.-M. Prieur ◽  
C. Bourdin ◽  
F. Sarès ◽  
J.-L. Vercher

A major issue in motor control studies is to determine whether and how we use spatial frames of reference to organize our spatially oriented behaviors. In previous experiments [2,16] we showed that simulated body tilt during off-axis rotation affected the performance in verbal localization and manual pointing tasks. It was hypothesized that the observed alterations were at least partly due to a change in the orientation of the egocentric frame of reference, which was indeed centered on the body but aligned with the gravitational vector. The present experiments were designed to test this hypothesis in a situation where no inertial constraints (except the usual gravitational one) exist and where the orientation of the body longitudinal z-axis was not aligned with the direction of the gravity. Eleven subjects were exposed to real static body tilt and were required to verbally localize (experiment 1) and to point as accurately as possible towards (experiment 2) memorized visual targets, in two conditions, Head-Free and Head-Fixed conditions. Results show that the performance was only affected by real body tilt in the localization task performed when the subject's head was tilted relative to the body. Thus, dissociation between gravity and body longitudinal z-axis alone is not responsible for localization nor for pointing errors. Therefore, the egocentric frame of reference seems independent from the orientation of the gravity with regard to body z-axis as expected from our previous studies. Moreover, the use of spatial referentials appears to be less mandatory than expected for pointing movements (motor task) than for localization task (cognitive task).

2014 ◽  
Vol 111 (9) ◽  
pp. 1903-1919 ◽  
Author(s):  
Ian Moreau-Debord ◽  
Christophe Z. Martin ◽  
Marianne Landry ◽  
Andrea M. Green

To contribute appropriately to voluntary reaching during body motion, vestibular signals must be transformed from a head-centered to a body-centered reference frame. We quantitatively investigated the evidence for this transformation during online reach execution by using galvanic vestibular stimulation (GVS) to simulate rotation about a head-fixed, roughly naso-occipital axis as human subjects made planar reaching movements to a remembered location with their head in different orientations. If vestibular signals that contribute to reach execution have been transformed from a head-centered to a body-centered reference frame, the same stimulation should be interpreted as body tilt with the head upright but as vertical-axis rotation with the head inclined forward. Consequently, GVS should perturb reach trajectories in a head-orientation-dependent way. Consistent with this prediction, GVS applied during reach execution induced trajectory deviations that were significantly larger with the head forward compared with upright. Only with the head forward were trajectories consistently deviated in opposite directions for rightward versus leftward simulated rotation, as appropriate to compensate for body vertical-axis rotation. These results demonstrate that vestibular signals contributing to online reach execution have indeed been transformed from a head-centered to a body-centered reference frame. Reach deviation amplitudes were comparable to those predicted for ideal compensation for body rotation using a biomechanical limb model. Finally, by comparing the effects of application of GVS during reach execution versus prior to reach onset we also provide evidence that spatially transformed vestibular signals contribute to at least partially distinct compensation mechanisms for body motion during reach planning versus execution.


Perception ◽  
2005 ◽  
Vol 34 (5) ◽  
pp. 638-638 ◽  

Anthony Marcel, Christian Dobel, 2005 “Structured perceptual input imposes an egocentric frame of reference—pointing, imagery, and spatial self-consciousness” Perception 34 429 – 451 The last sentence of paragraph 3 on page 443 reads: (iv) “What is the angle between your arms or draw the shape made by your two arms”. It should read: (iv) “What is the angle between your arms? Or draw the shape made by your two arms.” The heading of column 6 of table 1 on page 444 reads: Number/total subjects showing confusion It should read: Number/total number of subjects showing confusion


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3297
Author(s):  
Philipp M. Schmid ◽  
Christoph M. Bauer ◽  
Markus J. Ernst ◽  
Bettina Sommer ◽  
Lars Lünenburger ◽  
...  

Neck pain is a frequent health complaint. Prolonged protracted malpositions of the head are associated with neck pain and headaches and could be prevented using biofeedback systems. A practical biofeedback system to detect malpositions should be realized with a simple measurement setup. To achieve this, a simple biomechanical model representing head orientation and translation relative to the thorax is introduced. To identify the parameters of this model, anthropometric data were acquired from eight healthy volunteers. In this work we determine (i) the accuracy of the proposed model when the neck length is known, (ii) the dependency of the neck length on the body height, and (iii) the impact of a wrong neck length on the models accuracy. The resulting model is able to describe the motion of the head with a maximum uncertainty of 5 mm only. To achieve this high accuracy the effective neck length must be known a priory. If however, this parameter is assumed to be a linear function of the palpable neck length, the measurement error increases. Still, the resulting accuracy can be sufficient to identify and monitor a protracted malposition of the head relative to the thorax.


1982 ◽  
Vol 98 (1) ◽  
pp. 83-104
Author(s):  
MICHAEL I. LATZ ◽  
JAMES F. CASE

The posterior light organ and eyestalk of the midwater shrimp, Sergestes similis Hansen, are capable of 140° of angular movement within the body during pitch body tilt, maintaining the organs at near horizontal orientations. Counter-rotations compensate for 74–80% of body inclination. These responses are statocyst mediated. Unilateral statolith ablation reduces compensation by 50%. There is no evidence for either homolateral or contralateral control by the single functioning statocyst. Bilateral lith ablation abolishes counter-rotation. Light organ and eyestalk orientations are unaffected by the direction of imposed body tilt. Bioluminescence is emitted downward from horizontal animals with an angular distribution similar to the distribution of oceanic light. The amount of downward directed luminescence in tilted animals decreases at large angles of body inclination due to less than total compensation by the light organs. Eye turning towards a light source is induced by upward-directed illumination. The resulting change in eyestalk orientations never amounts to more than 25°. The turning is abolished by bilateral statolith ablation. Downward directed illumination, comparable in intensity to oceanic light, generally does not generate significant eye turning. Light organ orientations remain unaffected by directional illumination, both before and after bilateral statolith ablation. The compensatory counter-rotations by the posterior light organ and eyestalk suggest that counter-illumination by S. similis remains effective in inclined animals.


1992 ◽  
Vol 2 (1) ◽  
pp. 1-14
Author(s):  
Charles Schnabolk ◽  
Theodore Raphan

Off-vertical-axis rotation (OVAR) in darkness generates continuous compensatory eye velocity. No model has yet been presented that defines the signal processing necessary to estimate head velocity in three dimensions for arbitrary rotations during OVAR. The present study develops a model capable of estimating all 3 components of head velocity in space accurately. It shows that processing of two patterns of otolith activation, one delayed with respect to the other, for each plane of eye movement is not sufficient. (A pattern in this context is an array of signals emanating from the otoliths. Each component of the array is a signal corresponding to a class of otolith hair cells with a given polarization vector as described by Tou and Gonzalez in 1974.) The key result is that estimation of head velocity in space can be achieved by processing three temporally displaced patterns, each representing a sampling of gravity as the head rotates. A vector cross product of differences between pairs of the sampled gravity vectors implements the estimation. An interesting property of this model is that the component of velocity about the axis of rotation reduces to that derived previously using the pattern estimator model described by Raphan and Schnabolk in 1988 and Fanelli et al in 1990. This study suggests that the central nervous system (CNS) maintains a current as well as 2 delayed representations of gravity at every head orientation during rotation. It also suggests that computing vector cross products and implementing delays may be fundamental operations in the CNS for generating orientation information associated with motion.


Perception ◽  
10.1068/p5183 ◽  
2005 ◽  
Vol 34 (4) ◽  
pp. 429-451 ◽  
Author(s):  
Anthony Marcel ◽  
Christian Dobel

Perceptual input imposes and maintains an egocentric frame of reference, which enables orientation. When blindfolded, people tended to mistake the assumed intrinsic axes of symmetry of their immediate environment (a room) for their own egocentric relation to features of the room. When asked to point to the door and window, known to be at mid-points of facing (or adjacent) walls, they pointed with their arms at 180° (or 90°) angles, irrespective of where they thought they were in the room. People did the same when requested to imagine the situation. They justified their responses (inappropriately) by logical necessity or a structural description of the room rather than (appropriately) by relative location of themselves and the reference points. In eight experiments, we explored the effect on this in perception and imagery of: perceptual input (without perceptibility of the target reference points); imaging oneself versus another person; aids to explicit spatial self-consciousness; order of questions about self-location; and the relation of targets to the axes of symmetry of the room. The results indicate that, if one is deprived of structured perceptual input, as well as losing one's bearings, (a) one is likely to lose one's egocentric frame of reference itself, and (b) instead of pointing to reference points, one demonstrates their structural relation by adopting the intrinsic axes of the environment as one's own. This is prevented by providing noninformative perceptual input or by inducing subjects to imagine themselves from the outside, which makes explicit the fact of their being located relative to the world. The role of perceptual contact with a structured world is discussed in relation to sensory deprivation and imagery, appeal is made to Gibson's theory of joint egoreception and exteroception, and the data are related to recent theories of spatial memory and navigation.


2018 ◽  
Author(s):  
Virginie Crollen ◽  
Tiffany Spruyt ◽  
Pierre Mahau ◽  
Roberto Bottini ◽  
Olivier Collignon

Recent studies proposed that the use of internal and external coordinate systems may be more flexible in congenitally blind when compared to sighted individuals. To investigate this hypothesis further, we asked congenitally blind and sighted people to perform, with the hands uncrossed and crossed over the body midline, a tactile TOJ and an auditory Simon task. Crucially, both tasks were carried out under task instructions either favoring the use of an internal (left vs. right hand) or an external (left vs. right hemispace) frame of reference. In the internal condition of the TOJ task, our results replicated previous findings (Röder et al., 2004) showing that hand crossing only impaired sighted participants’ performance, suggesting that blind people did not activate by default a (conflicting) external frame of reference. However, under external instructions, a decrease of performance was observed in both groups, suggesting that even blind people activated an external coordinate system in this condition. In the Simon task, and in contrast with a previous study (Roder et al., 2007), both groups responded more efficiently when the sound was presented from the same side of the response (‘‘Simon effect’’) independently of the hands position. This was true under the internal and external conditions, therefore suggesting that blind and sighted by default activated an external coordinate system in this task. All together, these data comprehensively demonstrate how visual experience shapes the default weight attributed to internal and external coordinate systems for action and perception depending on task demand.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6159
Author(s):  
Valeria Belluscio ◽  
Gabriele Casti ◽  
Marco Ferrari ◽  
Valentina Quaresima ◽  
Maria Sofia Sappia ◽  
...  

Increased oxygenated hemoglobin concentration of the prefrontal cortex (PFC) has been observed during linear walking, particularly when there is a high attention demand on the task, like in dual-task (DT) paradigms. Despite the knowledge that cognitive and motor demands depend on the complexity of the motor task, most studies have only focused on usual walking, while little is known for more challenging tasks, such as curved paths. To explore the relationship between cortical activation and gait biomechanics, 20 healthy young adults were asked to perform linear and curvilinear walking trajectories in single-task and DT conditions. PFC activation was assessed using functional near-infrared spectroscopy, while gait quality with four inertial measurement units. The Figure-of-8-Walk-Test was adopted as the curvilinear trajectory, with the “Serial 7s” test as concurrent cognitive task. Results show that walking along curvilinear trajectories in DT led to increased PFC activation and decreased motor performance. Under DT walking, the neural correlates of executive function and gait control tend to be modified in response to the cognitive resources imposed by the motor task. Being more representative of real-life situations, this approach to curved walking has the potential to reveal crucial information and to improve people’ s balance, safety, and life’s quality.


2013 ◽  
Vol 37 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Grzegorz Juras ◽  
Kajetan Słomka

The aim of this study was to explore the effects of accuracy constraints on the characteristics of anticipatory postural adjustments (APA) in a task that involves a movement consisting of a controlled phase and a ballistic phase. It was hypothesized that APA scaling with task parameters (target size) would be preserved even when the task is performed by muscles that have no direct effects on APA. Sixteen healthy right handed subjects participated in the study. All participants had no prior experience in dart throwing. Subjects’ average age was 24.1 ± 1.9 years. A force platform and a motion capture system were used to register kinetics of the body and kinematics of the throwing arm and throwing accuracy. The experiment consisted of six series of twenty consecutive dart throws to a specified target. Target sizes (T2-T6) were set at 25%, 50%, 75%, 125% and 150% of target 1 (T1) initially set as the spread of the last 20 throws in a 50 throw training session. This allowed to distinguish six indexes of difficulty (ID’s) ranging from 2,9 to 5,9. A one-way ANOVA for repeated measures was used for statistical analysis. Results of ANOVA showed a significant effect of target size at Constant Error but no effect at APA time. There were also no significant differences between hit and miss throws. From a control perspective, it can be stated that changes in central commands did not lead to changes in APA time in the analyzed motor task.


2002 ◽  
Vol 11 (6) ◽  
pp. 349-355
Author(s):  
Ognyan I. Kolev

Purpose: To further investigate the direction of (I) nystagmus and (II) self-motion perception induced by two stimuli: (a) caloric vestibular stimulations and (b) a sudden halt during vertical axis rotation. Subjects and methods: Twelve normal humans received caloric stimulation at 44°C, 30°C, and 20°C while in a supine position with the head inclined 30° upwards. In a second test they were rotated around the vertical axis with the head randomly placed in two positions: tilted 30° forward or tilted 60° backward, at a constant velocity of 90°/sec for 2 minutes and then suddenly stopped. After both tests they were asked to describe their sensations of self-motion. Eye movements were recorded with an infrared video-technique. Results: Caloric stimulation evoked only horizontal nystagmus in all subjects and induced a non-uniform complex perception of angular in frontal and transverse planes (the former dominated) and linear movements along the antero-posterior axis (sinking dominated) of the subject's coordinates. The self-motion was felt with the whole body or with a part of the body. Generally the perception evoked by cold (30°C) and warm (44°C) calorics was similar, although there were some differences. The stronger stimulus (20°C) evoked not only quantitative but also qualitative differences in perception. The abrupt halt of rotation induced self-motion perception and nystagmus only in the plane of rotation. The self-motion was felt with the whole body. Conclusion: There was no difference in the nystagmus evoked by caloric stimulation and a sudden halt of vertical axis rotation (in head positions to stimulate the horizontal canals); however, the two stimuli evoked different perceptions of self-motion. Calorics provoked the sensation of self-rotation in the frontal plane and linear motion, which did not correspond to the direction of nystagmus, as well as arcing and a reset phenomenon during angular and linear self-motion, caloric-induced self-motion can be felt predominantly or only with a part of the body, depending on the self-motion intensity. The findings indicate that, unlike the self-motion induced by sudden halt of vertical axis rotation, several mechanisms take part in generating caloric-induced self-motion.


Sign in / Sign up

Export Citation Format

Share Document