scholarly journals POSSIBILITIES OF REGENERATION OF THE MUSCLES OF THE SOFT PALATE DURING ITS NONUNION DEPENDING ON THE MYOGENIC POTENTIAL OF STEM CELLS. Review

2020 ◽  
Vol 16 (3) ◽  
pp. 63-71
Author(s):  
L.V. Kharkov ◽  
R.I. Egorov

Relevance. Today there are more than 150 methods for eliminating congenital defects of the hard and soft palate. However, these techniques do not always lead to high functional results, which leads to repeated surgical interventions and long-term speech therapy rehabilitation. Therefore, there is a problem with the prognosis of such treatment. The search for a marker for assessing the prognosis of surgical intervention is relevant. One of these markers may be the state of the myogenic potential of stem cells. Objective: to analyze the possibility of preliminary assessment of muscle regeneration, depending on the myogenic potential of stem cells, in order to increase the effectiveness of treatment of children with non-union of the soft palate. Method. An analytical review of the literature on keywords from the scientometric databases PubMed, Scopus, Web of Science. Results. Satellite cells represent an adequate system model for studying the biology of adult stem cells. Satellite cells can be considered candidates for cell therapy in muscle regeneration. First, they are one of the most abundant and most accessible cells in our body. Secondly, there is a panel of specific markers that can be used to isolate satellite cells. Third, satellite cells are localized within clear boundaries of the anatomical niche, and signaling mechanisms are currently being studied. Fourth, there is the possibility of recreating muscle injuries in which satellite cells can be studied. Future research aimed at increasing the purification of satellite cells so as to maintain their low differentiation, increase the engraftment potential, as well as new approaches aimed at obtaining satellite cells from iPS cells, will help accelerate the progress and development of drugs for cell therapy in the treatment of muscle degenerative diseases. Conclusions. The data on the myogenic potential of stem cells, in muscle regeneration, obtained on satellite cell models, can be used to increase the effectiveness of the treatment of children with nonunion of the soft palate.

1970 ◽  
Vol 3 (1) ◽  
pp. 66-80
Author(s):  
AKMM Islam ◽  
AAS Majumder ◽  
F Doza ◽  
MM Rahman ◽  
H Jesmin

Cardiovascular diseases are the major causes of mortality and morbidity throughout the world. Treatment of these diseases is often incomplete, suboptimal and far from permanent cure. One of the reasons behind this is the nature of heart as a terminally differentiated organ. Preclinical and clinical research in the last few decades has put a challenge to this conventional belief regarding the inability of regeneration of the cardiomyocytes. Embryonic, foetal and a wide range of adult stem cells have been used so far. Differentiation of adult somatic cells has lead to breakthrough discovery of induced pleuripotent stem cells which may be a potential solution of controversy over embryonic stem cell issue. Stem cells specially those of bone marrow origin are already being used in a limited scale to treat acute myocardial infarction, chronic myocardial ischaemia and cardiomyopathy with efficacy, feasibility and safety. Mesenchymal stem cells and adult cardiac stem cells are on the way to bedside use. skeletal myoblasts have been associated with life-threatening ventricular arrhythmia. Stem cells combined with tissue engineering have produced prosthetic tissue valves, and hope for manufacturing whole heart ex vivo in near future. However, like other rapidly evolving modalities, there are more questions than answers. Exact indications, patient selection, cell selection, timing of therapy, efficacy of repeated therapies, co-administration of growth factors, and genetic modification of stem cells are yet to be determined with precision. International community is coming forward with enthusiasm and vigor to explore the enormous potential of stem cell therapy and regenerative medicine. Future research will hopefully facilitate more versatile application of stem cells in treating the life-threatening and disabling ailments of mankind. Keywords: Stem cell; regenerative medicine DOI: 10.3329/cardio.v3i1.6429Cardiovasc. j. 2010; 3(1): 66-80


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Aurore L'honoré ◽  
Pierre-Henri Commère ◽  
Elisa Negroni ◽  
Giorgia Pallafacchina ◽  
Bertrand Friguet ◽  
...  

Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS). Using Pitx2/3 single and double mutant mice that provide genetic models of deregulated redox states, we demonstrate that moderate overproduction of ROS results in premature differentiation of satellite cells while high levels lead to their senescence and regenerative failure. Using the ROS scavenger, N-Acetyl-Cysteine (NAC), in primary cultures we show that a physiological increase in ROS is required for satellite cells to exit the cell cycle and initiate differentiation through the redox activation of p38α MAP kinase. Subjecting cultured satellite cells to transient inhibition of P38α MAP kinase in conjunction with NAC treatment leads to their rapid expansion, with striking improvement of their regenerative potential in grafting experiments.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 345 ◽  
Author(s):  
Maria Borja-Gonzalez ◽  
Jose C. Casas-Martinez ◽  
Brian McDonagh ◽  
Katarzyna Goljanek-Whysall

Ageing is associated with disrupted redox signalling and increased circulating inflammatory cytokines. Skeletal muscle homeostasis depends on the balance between muscle hypertrophy, atrophy and regeneration, however during ageing this balance is disrupted. The molecular pathways underlying the age-related decline in muscle regenerative potential remain elusive. microRNAs are conserved robust gene expression regulators in all tissues including skeletal muscle. Here, we studied satellite cells from adult and old mice to demonstrate that inhibition of miR-21 in satellite cells from old mice improves myogenesis. We determined that increased levels of proinflammatory cytokines, TNFα and IL6, as well as H2O2, increased miR-21 expression in primary myoblasts, which in turn resulted in their decreased viability and myogenic potential. Inhibition of miR-21 function rescued the decreased size of myotubes following TNFα or IL6 treatment. Moreover, we demonstrated that miR-21 could inhibit myogenesis in vitro via regulating IL6R, PTEN and FOXO3 signalling. In summary, upregulation of miR-21 in satellite cells and muscle during ageing may occur in response to elevated levels of TNFα and IL6, within satellite cells or myofibrillar environment contributing to skeletal muscle ageing and potentially a disease-related decline in potential for muscle regeneration.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Manuel Scimeca ◽  
Elena Bonanno ◽  
Eleonora Piccirilli ◽  
Jacopo Baldi ◽  
Alessandro Mauriello ◽  
...  

Age-related bone diseases, such as osteoarthritis and osteoporosis, are strongly associated with sarcopenia and muscle fiber atrophy. In this study, we analyzed muscle biopsies in order to demonstrate that, in osteoarthritis patients, both osteophytes formation and regenerative properties of muscle stem cells are related to the same factors. In particular, thanks to immunohistochemistry, transmission electron microscopy, and immunogold labeling we investigated the role of BMP-2 in muscle stem cells activity. In patients with osteoarthritis both immunohistochemistry and transmission electron microscopy allowed us to note a higher number of CD44 positive satellite muscle cells forming syncytium. Moreover, the perinuclear and cytoplasmic expression of BMP-2 assessed byin situmolecular characterization of satellite cells syncytia suggest a very strict correlation between BMP-2 expression and muscle regeneration capability. Summing up, the higher BMP-2 expression in osteoarthritic patients could explain the increased bone mineral density as well as decreased muscle atrophy in osteoarthrosic patients. In conclusion, our results suggest that the control of physiological BMP-2 balance between bone and muscle tissues may be considered as a potential pharmacological target in bone-muscle related pathology.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Jeanne AdiwinataPawitan

Background. Alternative approaches to transplantation for liver failure are needed. One of the alternative approaches is stem cell therapy. However, stem cell therapy in liver failure is not standardized yet, as every centre have their own methods. This systematic review is aimed at compiling and analyzing the various studies that use stem cells to treat liver failure, to get an insight into potential protocols in terms of safety and efficacy by comparing them to controls. Methods. This systematic review was done according to PRISMA guidelines and submitted for registration in PROSPERO (registration number CRD42018106119). All published studies in PubMed/MEDLINE and Cochrane Library, using key words: “human” and “stem cell” AND “liver failure” on 16th June 2018, without time restriction. In addition, relevant articles that are found during full-text search were added. Inclusion criteria included all original articles on stem cell use in humans with liver failure. Data collected included study type, treatment and control number, severity of disease, concomitant therapy, type and source of cells, passage of cells, dose, administration route, repeats, and interval between repeats, outcomes, and adverse events compared to controls. Data were analyzed descriptively to determine the possible causes of adverse reactions, and which protocols gave a satisfactory outcome, in terms of safety and efficacy. Results. There were 25 original articles, i.e., eight case studies and 17 studies with controls. Conclusion. Among the various adult stem cells that were used in human studies, MSCs from the bone marrow or umbilical cord performed better compared to other types of adult stem cells, though no study showed a complete and sustainable performance in the outcome measures. Intravenous (IV) route was equal to invasive route. Fresh or cryopreserved, and autologous or allogeneic MSCs were equally beneficial; and giving too many cells via intraportal or the hepatic artery might be counterproductive.


2019 ◽  
Vol 63 (6-7) ◽  
pp. 295-299
Author(s):  
Annalaura Mancia ◽  
Giulia Zuccon ◽  
Denise Lunardi ◽  
Barbara Biancani ◽  
Claudia Gili ◽  
...  

We have successfully isolated cells with stem-like properties from bottlenose dolphin (Tursiops truncatus) umbilical cord. Our results show that this cetacean species has embryonic fetal and adult stem cells as do humans and other studied mammals. This accomplishment allows to eventually investigate whether dolphins, due to their unique adaptations to aquatic environments, have special stem cell lineages or distinctive mechanisms of cell programming. Further characterization of their potency to differentiate into multiple cell lineages would fulfill numerous applicative purposes. We characterized, developed and refined a new protocol for obtaining potential stem cells from umbilical cord tissues of the bottlenose dolphin. Tissue samples were taken from umbilical cords of successful deliveries immediately after placenta ejection and collection from the water. Umbilical cord samples (2-3 cm3) were excised and subjected to enzymatic digestion and mechanical dissociation. Viable cells from specimens resident in the Oceanografic Valencia were cultured and subsequently isolated and tested for pluripotent characteristics (cell morphology, phenotype and expression of surface markers). Cell viability was confirmed also after freezing/thawing. The established protocol is suitable for collection/isolation/culture of dolphin potential mesenchymal stem cells from dolphin umbilical cord, which can be deposited in cell banks for future research needs.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shiqin Li ◽  
Meng Wang ◽  
Yanghui Chen ◽  
Wei Wang ◽  
Junying Wu ◽  
...  

Germline stem cells (GSCs) are adult stem cells that are responsible for the production of gametes and include spermatogonial stem cells (SSCs) and ovarian germline stem cells (OGSCs). GSCs are located in a specialized microenvironment in the gonads called the niche. Many recent studies have demonstrated that multiple signals in the niche jointly regulate the proliferation and differentiation of GSCs, which is of significance for reproductive function. Previous studies have demonstrated that the hedgehog (Hh) signaling pathway participates in the proliferation and differentiation of various stem cells, including GSCs in Drosophila and male mammals. Furthermore, the discovery of mammalian OGSCs challenged the traditional opinion that the number of primary follicles is fixed in postnatal mammals, which is of significance for the reproductive ability of female mammals and the treatment of diseases related to germ cells. Meanwhile, it still remains to be determined whether the Hh signaling pathway participates in the regulation of the behavior of OGSCs. Herein, we review the current research on the role of the Hh signaling pathway in mediating the behavior of GSCs. In addition, some suggestions for future research are proposed.


2008 ◽  
Vol 24 (3-4) ◽  
pp. E18 ◽  
Author(s):  
Matthew T. Harting ◽  
James E. Baumgartner ◽  
Laura L. Worth ◽  
Linda Ewing-Cobbs ◽  
Adrian P. Gee ◽  
...  

Preliminary discoveries of the efficacy of cell therapy are currently being translated to clinical trials. Whereas a significant amount of work has been focused on cell therapy applications for a wide array of diseases, including cardiac disease, bone disease, hepatic disease, and cancer, there continues to be extraordinary anticipation that stem cells will advance the current therapeutic regimen for acute neurological disease. Traumatic brain injury is a devastating event for which current therapies are limited. In this report the authors discuss the current status of using adult stem cells to treat traumatic brain injury, including the basic cell types and potential mechanisms of action, preclinical data, and the initiation of clinical trials.


Sign in / Sign up

Export Citation Format

Share Document