scholarly journals Multifractal analysis of geometric parameters of nanoforms formed on the surface of ultrathin layers of ZnO and ZnO–CdO synthesized by the sol-gel method

Author(s):  
P.P. Moskvin ◽  
◽  
W. Sadowski ◽  
V.B. Kryzhanivskyy ◽  
G.V. Skyba ◽  
...  

Superthin layers in ZnO and ZnO–CdO systems, which are intended for the use as transparent electrodes of modern optoelectronic devices, were synthesized by modified sol-gel method. The ranges of parameters of the technological process were established to obtain high-quality layers of material on glass substrates. Surface morphology depending on the synthesis conditions was studied by scanning electron microscopy. SEM images of the surface served as a basis for the multifractal analysis of the surface areas and volumes of nanoforms that are formed on the surface of the obtained layers. The dependences of the multifractal parameters of the surface nanoforms characterizing the surface state were determined as a function of the temperature of the final annealing of the layers. The relationships between Rainier numbers and fractal ordering parameters describing the surface geometry of the layers with the temperatures of the final annealing were established. The numerical values of the fractal characteristics of the obtained surface were used to estimate the influence of the fractal surface geometry on the value of the molar surface energy of the layers.

2013 ◽  
Vol 652-654 ◽  
pp. 519-522
Author(s):  
Jun Chen ◽  
Yue Hui Hu ◽  
Hong Hao Hu ◽  
Yi Chuan Chen

Transparent thin films of Sn-doped ZnO (ZnO:Sn) were deposited onto silica glass substrates by the sol–gel method. The effect of different Sn doping on the crystallinity, structural, optical and electrical properties of ZnO:Sn thin films were investigated by XRD, SEM, UV-VIS spectrophotometer and four-point probe method respectively. Among all of ZnO:Sn thin films in this paper, Sn-doped with 2 at.% exhibited the best properties, the surface demonstrate an accumulative crystallization and hexagonal structure, with a high-preferential c-axis orientation, namely an average transmittance of 90% and the resistivity of 19.6 Ω·cm.


2011 ◽  
Vol 399-401 ◽  
pp. 1447-1450
Author(s):  
Zhi Yong Yu ◽  
Han Xing Liu

The layered LiNi1/2Mn1/2O2 cathode materials were synthesized by a sol gel method. The effects of calcination temperature and time on the structural and electrochemical properties of the LiNi1/2Mn1/2O2 were investigated. The prepared samples were characterized by X-ray diffraction (XRD) and electrochemical analysis. The results revealed that the layered LiNi1/2Mn1/2O2 material could be optimal synthesized at temperature of 900°C for 10h. The sample prepared under the above conditions has the highest initial discharge capacity of 151 mAh/g and showed no dramatic capacity fading during 20 cycles between 2.5-4.5V at a current rate of 20mA/g.


Author(s):  
Rita Bacelar Figueira

The properties and wide application range of organic-inorganic hybrid (O-IH) sol-gel materials have attracted significant attention over the past decades. The combination of organic polymers and inorganic materials in a single-phase provides exceptional possibilities to tailor electrical, optical and mechanical properties concerning diverse applications. This unlimited design concept has led to the development of diverse coatings for several applications such as glasses, and metals to mitigate mechanical abrasion, erosion and corrosion. This class of materials could be easily obtained by sol-gel method at mild synthesis conditions. Furthermore, the large variety of available chemical precursors allows producing a diversity of coatings with tuned mechanical and thermal properties. This chapter will introduce the fundamentals of the sol-gel method to produce O-IH protective thin coatings and discuss the methodologies used to apply these materials onto different metallic substrates for erosion and corrosion protection.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
S. Çetinkaya ◽  
H. A. Çetinkara ◽  
F. Bayansal ◽  
S. Kahraman

CuO interlayers in the CuO/p-Si Schottky diodes were fabricated by using CBD and sol-gel methods. Deposited CuO layers were characterized by SEM and XRD techniques. From the SEM images, it was seen that the film grown by CBD method is denser than the film grown by sol-gel method. This result is compatible with XRD results which show that the crystallization in CBD method is higher than it is in sol-gel method. For the electrical investigations, current-voltage characteristics of the diodes have been studied at room temperature. ConventionalI-Vand Norde’s methods were used in order to determine the ideality factor, barrier height, and series resistance values. It was seen that the morphological and structural analysis are compatible with the results of electrical investigations.


2020 ◽  
Vol 1000 ◽  
pp. 227-232
Author(s):  
Nurhayati Indah Ciptasari ◽  
Adri Nora ◽  
Lutviasari Nuraini ◽  
Lusiana ◽  
Nono Darsono ◽  
...  

Zirconia (ZrO2) powders doped with cobalt were prepared by sol-gel method using inorganic salt of zirconium (IV) chloride (ZrCl4) as precursor. The amount of cobalt was varied in the range of 4–16% weight percent to study the effect to structural properties. X-ray diffraction (XRD) analysis suggested the resulting phases were zirconium oxide (Baddeleyite) with monoclinic crystal system along with cobalt oxide as secondary phase. The increasing cobalt content caused the XRD peaks to shift into lower angle due to substitution of Zr atom to smaller Co atom in crystal lattice. Scanning electron microscope (SEM) images showed the samples with higher Co content had smoother surface. Generally, the microstructures of Co doped zirconia powders consisted of large agglomerates with small particles on the surface.


2010 ◽  
Vol 24 (06n07) ◽  
pp. 667-675 ◽  
Author(s):  
M. ŠĆEPANOVIĆ ◽  
S. AŠKRABIĆ ◽  
M. GRUJIĆ-BROJČIN ◽  
A. GOLUBOVIĆ ◽  
Z. DOHČEVIĆ-MITROVIĆ ◽  
...  

Pure titania ( TiO 2) nanopowders and TiO 2 doped with 10 mol % of vanadium ions ( V 3+) are synthesized by sol-gel method. The dependence of structural characteristics of nanopowders on synthesis conditions is investigated by X-ray diffraction and Raman spectroscopy. Very intensive modes observed in Raman spectra of all nanopowders are assigned to anatase phase of TiO 2. Additional Raman modes of extremely low intensity which can be related to the presence of small amount of brookite amorphous phase are observed in pure TiO 2 nanopowders. In V -doped nanopowders anatase was the only TiO 2 phase detected. The variations in duration and heating rate of calcination influence slightly the Raman spectra of pure TiO 2, but have a great impact on Raman modes of anatase, as well as the additional Raman modes related to the presence of vanadium oxides in V -doped samples.


2007 ◽  
Vol 280-283 ◽  
pp. 839-844
Author(s):  
Hui Qing Fan

Relaxor-based 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) thin films were grown epitaxially on silicon substrates by sol-gel method and PbO cover coat technique, and investigated by x-ray diffraction, auger electron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The phase development and microstrure evolution of the PMN-PT film were significantly affected by the final annealing temperature and time. A perovskite PMN-PT film was obtained after annealing at 850oC for 1 min. Then, highly <100>-oriented and textured PMN-PT films could be achieved by using a LaNiO3 perovskite template.


Sign in / Sign up

Export Citation Format

Share Document