RAMAN STUDY OF VANADIUM-DOPED TITANIA NANOPOWDERS SYNTHESIZED BY SOL-GEL METHOD

2010 ◽  
Vol 24 (06n07) ◽  
pp. 667-675 ◽  
Author(s):  
M. ŠĆEPANOVIĆ ◽  
S. AŠKRABIĆ ◽  
M. GRUJIĆ-BROJČIN ◽  
A. GOLUBOVIĆ ◽  
Z. DOHČEVIĆ-MITROVIĆ ◽  
...  

Pure titania ( TiO 2) nanopowders and TiO 2 doped with 10 mol % of vanadium ions ( V 3+) are synthesized by sol-gel method. The dependence of structural characteristics of nanopowders on synthesis conditions is investigated by X-ray diffraction and Raman spectroscopy. Very intensive modes observed in Raman spectra of all nanopowders are assigned to anatase phase of TiO 2. Additional Raman modes of extremely low intensity which can be related to the presence of small amount of brookite amorphous phase are observed in pure TiO 2 nanopowders. In V -doped nanopowders anatase was the only TiO 2 phase detected. The variations in duration and heating rate of calcination influence slightly the Raman spectra of pure TiO 2, but have a great impact on Raman modes of anatase, as well as the additional Raman modes related to the presence of vanadium oxides in V -doped samples.

2011 ◽  
Vol 399-401 ◽  
pp. 1447-1450
Author(s):  
Zhi Yong Yu ◽  
Han Xing Liu

The layered LiNi1/2Mn1/2O2 cathode materials were synthesized by a sol gel method. The effects of calcination temperature and time on the structural and electrochemical properties of the LiNi1/2Mn1/2O2 were investigated. The prepared samples were characterized by X-ray diffraction (XRD) and electrochemical analysis. The results revealed that the layered LiNi1/2Mn1/2O2 material could be optimal synthesized at temperature of 900°C for 10h. The sample prepared under the above conditions has the highest initial discharge capacity of 151 mAh/g and showed no dramatic capacity fading during 20 cycles between 2.5-4.5V at a current rate of 20mA/g.


2012 ◽  
Vol 599 ◽  
pp. 104-107
Author(s):  
Fang Zhao ◽  
Ya Qiong Zhao ◽  
Yuan Yuan Li ◽  
Gang Ni

This study investigated the effect of cationic, anionic, and nonionic surfactants on the formation, morphology, and surface properties of TiO2 nanoparticles synthesized by modified sol-gel method. The crystalline structures and morphologies of the powder have been characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD results showed TiO2 nanoparticles synthesized with different surfactants only include anatase phase. The TEM analysis revealed the surfactants can enhance dispersion of TiO2 nanoparticles. In contrast, the anionic surfactants showed hightly effects. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalyst with surfactants was higher than pure TiO2 under ultraviolet.


2010 ◽  
Vol 150-151 ◽  
pp. 707-710
Author(s):  
Dan Hong Wang ◽  
Xiao Ru Zhao ◽  
Hui Nan Sun ◽  
Li Bing Duan ◽  
Chang Le Chen

The sol-gel method was employed to prepare the Eu3+-doped TiO2 thin films. The influence of doping concentration and annealing temperature on the structures and photoluminescence (PL) properties was investigated. The result of X-ray diffraction revealed that all the films are of anatase phase. It is shown that the PL intensities of the films increased with Eu3+ concentration and reached the maximum at 1.4 mol%, then decreased with the concentration. Observed anatase phase appeared at temperature above 400 °C, and the luminescence intensity increased with the increase of annealing temperature.


2011 ◽  
Vol 306-307 ◽  
pp. 1330-1333
Author(s):  
Ying Lu ◽  
Chang Lu Shao ◽  
Peng Zhang ◽  
Ming Yi Zhang ◽  
Zhen Yi Zhang ◽  
...  

A simple and novel method to synthesize metallic ion doped titania was investigated. In this work, undoped titania, stannum/titania, vanadium/titania and strontium/titania nanofibers have been fabricated by a sol-gel method with electrospinning techniques. The as-prepared composite nanofibers were incinerated at 500 °C respectively. The nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis diffuse reflectance (DR) spectroscopy. The results suggest that crystal structures of stannum/titania, vanadium/titania and strontium/titania composite nanofibers were changed due to different material ion disturbing.


2018 ◽  
Vol 29 (7) ◽  
pp. 075702 ◽  
Author(s):  
Feng Qingge ◽  
Cai Huidong ◽  
Lin Haiying ◽  
Qin Siying ◽  
Liu Zheng ◽  
...  

2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


2011 ◽  
Vol 268-270 ◽  
pp. 356-359 ◽  
Author(s):  
Wen Song Lin ◽  
C. H. Wen ◽  
Liang He

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2and FeCl2as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2samples in Fe2+and Mn2+states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.


2021 ◽  
Vol 93 (3) ◽  
pp. 30401
Author(s):  
Jiaxing Wang ◽  
Hai Yu ◽  
Yong Zhang

SnO2 nanoparticle architectures were successfully synthesized using a sol-gel method and developed for acetone gas detection. The morphology and structure of the particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The SnO2 nanoparticle architectures were configured as high-performance sensors to detect acetone and showed a very fast response time (<1 s), a short recovery time (10 s), good repeatability and high selectivity at a relatively low working temperature. Thus, SnO2 nanoparticles should be promising candidates for designing and fabricating acetone gas sensors with good gas sensing performance. The possible gas sensing mechanism is also presented.


Sign in / Sign up

Export Citation Format

Share Document