scholarly journals Rheological properties of liquid ebonite compositions filled with shungite

Author(s):  
Y.M. Pushkarev ◽  
◽  
S.V. Saitarly ◽  

The effect of shungite on the structural and viscous-flow properties of compositions based on oligobutadiene was studied. The strength of coagulation structures of ebonite compositions filled with shungite was determined. The critical filling concentration was established and it is 40 wt.% of shungite per 100 wt.% of oligobutadiene. It was shown that increasing the temperature from 200C to 800C leads to a significant reduction in the shear stress required to destroy the structure of the composition. Temperature and shear rate independently affect the structured composition. Thus, it was shown that shungite powder can be used as a filler in liquid ebonite compositions based on oligobutadiene.

Author(s):  
Santanu Basu ◽  
US Shivhare ◽  
GSV Raghavan

Jam is an intermediate moisture food containing fruit pulp, pectin, sugar and acid. The effect of sugar and pectin concentration, pH, shear rate and temperature on the time dependent rheological properties of pineapple jam was studied using a rheometer. Pineapple jam exhibited thixotropic behavior. Shear stress of the pineapple jam at a particular time of shearing depended on the shear rate, temperature and composition. Weltman, Hahn, and Figoni and Shoemaker, models were applied to describe the time dependent flow properties of pineapple jam. Hahn model described adequately the rheological characteristics of pineapple jam.


Author(s):  
Lyudmila P. SEMIKHINA ◽  
Daniil D. Korovin

A Brookfield DV-II + Pro rotational viscometer was used to study the viscosity of 7 samples of concentrated nanodispersed systems (nanofluids) with a similar viscosity (6-22 mPa ∙ s), the particles of the dispersed phase in which are nanosized surfactant micelles and conglomerates from them. It was found that for 5 out of 7 studied reagents, there is a decrease in viscosity typical for dispersed systems with an increase in the shear rate, and their flow curves, that is, the dependence of the shear stress on the shear rate, correspond to the ideal plastic flow of non-Newtonian fluids. Moreover, with high reliability, R2 ≥ 0.999 is described by the Bingham equation with a small value of the limiting shear stress (less than 0.2 Pa). It is shown that all the studied reagents are also characterized by an increase in the activation energy of a viscous flow Е with an increase in the shear rate. As a result, a decrease in viscosity with an increase in shear rate, typical for disperse systems, including nanofluids, is provided by a more significant increase in entropy changes ΔS compared to Е. It has been substantiated that, depending on the ratio between the activation energy of viscous flow Е and the change in entropy ΔS, the viscosity of concentrated micellar dispersed systems with an increase in the shear rate can decrease, remain unchanged, and increase. The last two cases, not typical for disperse systems and nanofluids, were identified and studied using the example of two demulsifiers, RIK-1 and RIK-2, with a maximum of a very narrow particle size distribution at 160 ± 5 nm, corresponding to the size of a special type of very stable micelles Surfactant — vesicle.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (2) ◽  
pp. 127-135
Author(s):  
Rafał Kozdrach ◽  

The article presents the results of research on the influence the type of base oil in lubricating compositions has on the rheological parameters of selected lubricants. Vegetable, mineral, and synthetic dispersion phases were used to produce lubricating greases. The modified amorphous silica was used as the dispersed phase. However, as a modifying additive was used a substance containing the antioxidants, corrosion inhibitors, and EP/AW additives. The experiments on rheological properties were carried out using a Physica MCR 101 rotational rheometer (manufactured by Anton Paar), equipped with a diffusion air bearing and connected to a pneumatic supply – an oil-free Jun-Air compressor and air drying block. The device is equipped with a Peltier system for temperature control in the range of –20°C to 200°C and an external thermostatic VISCOTHERM V2 system, working in the temperature range of –20°C to 200°C. The rheometer control and measurement data analysis were performed using Rheoplus software. The tests were carried out using a cone-plate measuring system with a shear rate range of 0.01–100 s-1 at 20°C for lubricating compositions prepared on various oil bases. To evaluate the value of rheological parameters, the results of tests of the dependence between shear stress and shear rate (flow curves) were used. For the theoretical determined on the flow curves, the following rheological models were used: Bingham, Herschel–Bulkley, Casson, and Tscheuschner. The values of the shear stress (yield point) in depending on the type of dispersion phase has changed. This proves that the use of a base oil with the appropriate functional properties does not weaken, but reinforces the spatial structure of a lubricating grease. It has an important meaning when selecting construction parameters when designing a central lubrication system with grease made from a vegetable oil base (Abyssinian oil). The rheological properties of the lubricating grease are influenced by the type of base oil and thickener, any additives in the grease, the production technology of the grease, and the conditions in which it is used. The tests revealed an important influence of the base oil on the rheological parameters that describe the behaviour of lubricating compositions subjected to stresses and strains in a lubricating system.


1964 ◽  
Vol 207 (5) ◽  
pp. 1035-1040 ◽  
Author(s):  
Roe E. Wells ◽  
Thomas H. Gawronski ◽  
Paul J. Cox ◽  
Richard D. Perera

The influence of fibrinogen on the flow properties of red cell suspensions (hematocrit 41) was studied by viscometry at low rates of shear (0.1–20 sec–1). These findings were correlated with sedimentation rates and photomicrographical studies of cell aggregation. Fibrinogen concentration was varied from 0.3 to 2.0 g/100 ml. The viscosity of the pure solutions of fibrinogen was independent of shear rate, ranging from 0.87 to 1.7 centipoise (cp) at 37 C. The viscosity of the cell suspensions at 10 sec–1 varied from 4.3 cp in 0.3 g/100 ml fibrinogen to 14 cp in 2 g/100 ml fibrinogen. All suspensions were markedly dependent on shear rate, viscosity increasing in exponential-like fashion as shear rate decreased. Extrapolation of plots of shear stress1/2 versus shear rate1/2 revealed the suspensions to sustain a finite stress without deformation or flow, the "yield value" increasing as fibrinogen concentration increased. Photomicrographs of dilute cell suspensions revealed the formation of cell aggregates and rouleaux, increasing in size and descent velocity as fibrinogen concentration increased.


2014 ◽  
Vol 13 (02) ◽  
pp. 1450009 ◽  
Author(s):  
Shreedhar Kolekar

The present paper focuses on preparation and process of the magnetorheological (MR) fluid whose carrier fluid is silicone-based oil and its additive is the commercial grease with different concentration of iron particles. General properties of MR fluid are discussed and rheological properties like shear rate, shear stress, viscosity of MR fluid can be found by using cone-and-plate sensor system-type rheometer. The result shows that shear stress as a function of magnetic flux density and viscosity does not strictly scale with iron loading.


2008 ◽  
Vol 62 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Jaroslav Katona ◽  
Verica Sovilj ◽  
Lidija Petrovic

Rheology modifiers are common constituents of food, cosmetic and pharmaceutic products. Often, by using two or more of them, better control of the product rheological properties can be achieved. In this work, rheological properties of hydroxypropymethyl cellulose (HPMC) and sodium carboxymethyl cellulose (NaCMC) solutions of different concentrations were investigated and compared to the flow properties of 1% HPMC/NaCMC binary mixtures at various HPMC/NaCMC mass ratios. Solutions of HPMC and NaCMC were found to be pseudoplastic, where pseudoplasticity increases with increase in the macromolecules concentration. Changes of the degree of pseudoplasticity, n as well as the coefficient of consistency, K with the concentration are more pronounced in HPMC solutions when compared to the NaCMC ones. This is mostly due to the ability of HPMC molecules to associate with each other at concentrations above critical overlap concentration, c , and greater flexibility of macromolecular chains. Binary mixtures of HPMC/NaCMC were also found to be pseudoplastic. Experimentally obtained viscosities of the mixture were proved to be larger than theoretically expected ones, indicating viscosity synergism as a consequence of HPMC-NaCMC interaction. Maximum in synergy was observed when HPMC/NaCMC mass ratio was 0.4/0.6, no matter of the shear rate applied. On the other hand, it was found that relative positive deviation, RPD decreases when shear rate is increased.


Author(s):  
Zurriye Yilmaz ◽  
Mehmet Dogan ◽  
Mahir Alkan ◽  
Serap Dogan

In the food industry, rheological properties, such as viscosity, shear rate, and shear stress, are the most important parameters required in the design of a technological process. Therefore, in this study, we determined the flow behavior and the time-dependent flow properties of Turkish Delight (TD) in the temperature range of 25-75°C using a capillar rheometer. The structure and thermal properties of TD were investigated by XRD and a simultaneous DTA/TG analysis. The shear rate values ranged from 5 to 300s-1. We found that: (i) TD behaved as non- Newtonian pseudoplastic foodstuff; (ii) while the measurement temperature increased, viscosity decreased; and (iii) TD was a rheopectic material. The effect of temperature on viscosity was described by means of the Arrhenius equation. The activation energies for the flow of pseudoplastic TD varied from 50.1-74.2 kJ/mol, depending on shear rate. Three models were used to predict the flow behavior of TD, namely, the Power law, Bingham and Casson models. The Power law model adequately described well the flow behavior of TD at different temperatures.


Tribologia ◽  
2018 ◽  
Vol 279 (3) ◽  
pp. 25-33 ◽  
Author(s):  
Ryszard CZARNY

The paper presents the results of studies of the influence of fillers introduced into lubricating greases on changes in values of shear stresses in resulting lubricant compositions. These fillers were powders of graphite, molybdenum disulphide, and PTFE. They are added to grease to improve their tribological properties. They also impact the rheological properties of lubricating compositions, especially on the course of the shear stress, whose value decreases with the duration of the flow of these compositions. Knowledge of changes in the value of this stress is essential in designing central lubrication systems in which these compositions may be used. Tests were performed on lithium grease without fillers as well as on a composition of this grease with the fillers mentioned above. Measurements were carried out using a Rheotest 2.1 rheometer by changing the shearing time at selected gradients of shear rate. Test results have shown that both the kind of filler and the shearing time have an impact on the value of shear stress in the tested lubricant composition.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2431
Author(s):  
Huixing Wang ◽  
Guang Zhang ◽  
Jiong Wang

This paper investigates the quasi-static rheological properties of lithium-based magnetorheological (MR) grease under large deformation. Three types of lithium-based MR grease comprising different mass ratios of carbonyl iron (CI) particles and lithium-based grease were prepared. The dependence of the magneto-induced stress–strain curves for MR grease on CI particles content, shear rate, and shear deformation under quasi-static monotonic shear conditions were tested and discussed. The results demonstrate that the shear rate dependence of the maximum yield stress is significantly weakened by the magnetic field, and this weakening is further enhanced as the CI particles content of MR grease increases. In addition, to evaluate and characterize the behavior of the cyclic shear–stress curves of MR grease under quasi-static condition, cyclic shear tests under different controlled conditions, i.e., CI particles content, shear rate, shear strain amplitude, and magnetic field strength, were conduct and analyzed. The magneto-induced shear stress of MR grease with higher CI particles content shows a sharp decrease during the transition from loading to unloading. Moreover, the experiment results also show that the damping characteristics of MR grease are highly correlated with CI particles content, shear strain, and magnetic field strength.


2021 ◽  
Vol 17 (1) ◽  
pp. 39-49
Author(s):  
Halimatuddahliana Nasution ◽  
Winny Winny

Analysis of heating temperature and load weight to the rheological properties of waste plastic cups is very important to gain fundamental understanding of the structure, characteristics, and processability of the material. The samples were tested using melt flow indexer. The heating temperature investigated were 180°C, 190°C, 200°C, 210°C, 220°C and 230°C, and the weight load were 1,875 g, 2,160 g, 2,835 g, 3,035 g and 3,450 g. The results obtained showed that the rheological properties of products such as melt flow index, shear stress and shear rate increased and the viscosity decreased with the increasing of heating temperature and load weight. For higher heating temperatures, the melt flow index, shear stress and shear rate of waste plastic cup increased significantly with the increasing load weight whereas the viscosity of waste plastic cup did not decrease significantly with the increasing load weight.


Sign in / Sign up

Export Citation Format

Share Document