scholarly journals Characteristics of native gold at Kosumnerskoe placer gold deposit (the Nether-Polar Urals)

Author(s):  
M. A. Boguslavskiy ◽  
S. O. Khudyakov

The paper presents the results of a study of heavy mineral concentrates of Kosumnerskoe gold deposit as well as the native gold from them. This gold deposit includes two gravel deposits. The granulometric composition, morphology, roundness, flatness, presence of intergrowths of gold with other minerals, as well as the character of the surface, the chemical composition and internal structure of gold, have been investigated. Based on these results, the placer gold of rivers Narta-Yu and Nester-Shor has been concluded to be similar in morphology, chemical composition and internal structure so it allows attributing them to a single type of motherload, which could be named as gold-polysulfide-quartz type. On the results of the analysis of two gold deposits of this field, the gravel deposit of the river Nester-Shor has been concluded to be elder than gravel deposit of the river Narta-Yu.

Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 281
Author(s):  
Boris Gerasimov ◽  
Vasily Beryozkin ◽  
Alexander Kravchenko

Precambrian shields and outcropped Precambrian rock complexes in the Arctic may serve as the most important sources of various types of mineral raw materials, including gold. The gold potential of the Anabar shield in the territory of Siberia has, thus far, been poorly studied. A number of primary and placer gold occurrences have been discovered there, but criteria for the prediction of and search for gold mineralization remain unclear. The main purpose of this paper was to study the typomorphic features of placer gold in the central part of the Billyakh tectonic mélange zone in the Anabar shield and to compare them to mineralization from primary sources. To achieve this, we utilized common methods for mineralogical, petrographic, and mineragraphic analyses. Additionally, geochemical data were used. As a result of this investigation, important prospecting guides were identified, and essential criteria for the prediction of and search for gold deposits were elucidated. The characteristics of the studied placer gold were specific for gold derived from a proximal provenance. These characteristics included the poor roundness of the native gold grains, a cloddy–angular and dendritic form, an uneven surface, and a high content of coarse-fraction native gold (0.5–2 mm), which was as high as 24% of the volume of analyzed native gold. In addition, we conducted a study on the mineralogical features of the gold-sulfide mineralization that was disseminated throughout a small exposure area of paleo-Proterozoic para- and orthogneisses in the Anabar shield basement. A comparison of mineral inclusions in the coarse-fraction native gold and mineral assemblages in the ore deposits showed that one of the possible primary sources for placer gold might be small bodies of metasomatically altered orthogneisses associated with large granitoid plutons.


2020 ◽  
pp. 44-53
Author(s):  
O.Yu. Plotinskaya

Gold and silver mineralogy is studied in ores of the Yubileinoe porphyry gold deposit (Kazakhstan). Native gold is the major gold mineral. Its fneness varies from 970‰ in magnetite-hematite assemblage to 733–860‰ in pyrite-chalcopyrite assemblage. Silver occurs as admixture in native gold and, occasionally, as silver telluride. Native gold is associated with bi and Pb minerals: rucklidgeite, galenaclaustalite, and tetradymite-kawazulite. According to chlorite geothermometry, the Au, Ag and bi minerals precipitated at temperatures of 250-230 °С. These features are typical of the porphyry gold deposits worldwide. Figures 5. Tables 3. References 17.


2021 ◽  
Vol 6 (1) ◽  
pp. 19
Author(s):  
Hugo Paiva Tavares de Souza ◽  
Carlos Marcello Dias Fernandes ◽  
Ricardo de Freitas Lopes ◽  
Stéphane Amireault ◽  
Marcelo Lacerda Vasquez

The southeastern region of the Amazonian Craton has been the target of several metallogenetic surveys, which recently led to the identification of the world-class Volta Grande gold deposit with gold reserves of ~3.8 Moz at 1.02 g/t. This deposit is located ~60 km southeast of Altamira city, Pará state, and is hosted by the Três Palmeiras intrusive greenstone belt that is located in the northern Bacajá tectonic domain (2.24–2.0 Ga). The mineralization is hosted by a high-level intrusive and mylonitized suite. Local kinematic indicators suggest dip-slip movement in which the greenstone moves up relative to the intrusive rocks. Native gold mostly occurs as isolated grains in centimeter-wide quartz veins and veinlets associated with pervasive carbonate alteration that was synchronous with dynamic metamorphism. Part of the gold is also associated with disseminated sulfides in this generally low-sulfide mineralization. These relationships are compatible with orogenic lode-type gold systems elsewhere. New petrographic studies from core samples along a stratigraphic profile reveal the presence of lava flows and dykes of rhyodacite, rhyolite, and plutonic rocks such as quartz monzonite, granodiorite, monzodiorite, and subordinate microgranite crosscutting an earlier style of mineralization. These rocks are characterized by potassic, propylitic, intermediate argillic, and/or carbonate hydrothermal alterations in selective, pervasive, or fracture-controlled styles. Within the hydrothermal volcano-plutonic sequence, gold occurs as disseminated isolated grains or replacing sulfides. Both native gold and sulfides are also present in centimetric quartz veinlets. Such features of the deposit are similar to those from porphyry-type and low- to intermediate-sulfidation epithermal systems already identified in the Amazonian Craton. The Volta Grande deposit data suggest a second mineralizing event, common in large-tonnage gold deposits, and can represent a new exploration guide.


2021 ◽  
Vol 906 (1) ◽  
pp. 012082
Author(s):  
Boris Gerasimov

Abstract Typomorphic features of placer gold are carriers of the most important information necessary for the reconstruction of the history of the formation of placer and ore occurrences of gold and can be used as mineralogical criteria in the search for primary sources of placers. The study of these features is relevant for placer areas with unidentified gold sources, which include the territory of the north-east of the Siberian Platform. The internal structure of native gold is one of the most informative typomorphic features is. We studied the internal gold structures of modern placers and conglomerates of the Early Permian age in the north-east of the Siberian Platform. The purpose of the work: to identify the features of the internal structure of placer gold, depending on the chemical composition and the degree of its transformations, as well as the possibility of their use as a prospecting indicator. Structural etching of native gold was performed using the reagent: HCl + HNO3 + FeCl3 × 6H2O + CrO3 + thiurea + water. As a result of the research, it was found that the well-rounded high-grade gold of modern placers has undergone repeated redeposition through intermediate sources. The discovery of slightly rounded gold with an internal structure without signs of exogenous transformation indicates that it entered the modern alluvium from a nearby primary source. This was a prerequisite for setting up ore gold exploration, resulting in identification of apocarbonate hydrothermal-metasomatic formations with disseminated gold-sulfide mineralization were identified. Thus, the features of the internal structures of placer gold in combination with other typomorphic features are additional indications of determining the sources of formation of gold-bearing placers.


Author(s):  
V. A. Stepanov

About 1400 placers and several dozens of ore gold deposits are known in the Amur gold-bearing province. Placers are to a large degree worked out, so the future of the province is seen to be in the discovery of the new gold deposits. The paper shows the dependence of the productivity and composition of the native gold placers on the size and formational affiliation of the placer-forming gold deposit. The reference couples have been identified: the gold deposit and the placer formed due to the erosion of its' upper part. For example, the Tokur gold-quartz deposit is a channel-fill placer in Tokur stream, gold-sulphide-quartz deposit Pioneer—the placer in Ulungi river, gold-sulphide-quartz deposit Bamskoe—the placer of Chulbangro river, Berezitovoye gold-polymetallic deposit—placer of the Konstantinovsky stream and gold-silver field Pokrovskoye—placer of Sergeevsky stream. A forecast of new gold deposits of a certain formation has been made according to the parameters of the placer and the composition of the native gold. A similar selection of reference couples of a gold deposit and a placer with the subsequent forecasting of new deposits can be one of the methods for predicting gold deposits in the other gold-bearing provinces.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 381
Author(s):  
Zinaida Nikiforova

Based on the identified typomorphic features of placer gold, a set of determined morphogenetic criteria is proposed to identify the genesis of placer gold content and different sources in the platform areas, which allow more correctly selecting search methods and improving the efficiency of forecasting ore and placer gold deposits.Goldparticles larger than 0.25 mm with signs of wind-worn processing indicate the formation of autochthonous aeolian placers.Gold particles with signs of wind-worn processing with a size of 0.1–0.25 mm, forming an extensive halo of dispersion, indicate the formation of allochthonous placers in Quaternary deposits.Deflationary (autochthonous) placers of native gold can be found by the halo of its distribution of toroidal and sphericalhollow forms, which, of course, are the search morphogenetic criterion of aeolian placers.The presence of disc-shaped and lamellar gold particles with ridgelike edges in alluvial placers is typical for placers of heterogeneous origin, formed due to deflation of proluvialplacers.The discovery of pseudo-ore gold in alluvial placers indicates the arrival of gold from intermediate gold-bearing sources of different ages and not from primary sources, which is a morphogenetic criterion for determining different sources of the placer.In modern gold placers, the presence of gold of a pseudo-ore appearance can serve as a search criterion for the discovery of gold-bearing conglomerates with high gold content. The developed method for diagnosing the genotype of placer gold by its morphological characteristics (alluvial, aeolian, pseudo-ore) can be successfully used by industrial geological organizations to search and explore ore and placer gold deposits.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 250
Author(s):  
Chuanpeng Liu ◽  
Wenjie Shi ◽  
Junhao Wei ◽  
Huan Li ◽  
Aiping Feng ◽  
...  

The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone between the overlying Cretaceous rocks and the underlying Neoarchean gneissic monzogranite. Shi et al. reported that this deposit formed at 96 ± 2 Ma using pyrite Rb–Sr dating method and represents a new gold mineralization event in the Shandong Province in 2014. In this paper, we present new He–Ar–S isotopic compositions to further decipher the sources of fluids responsible for the Longquanzhan gold mineralization. The results show that the δ34S values of pyrites vary between 0.9‰ and 4.4‰ with an average of 2.3‰. Inclusion-trapped fluids in ore sulfides have 3He/4He and 40Ar/36Ar ratios of 0.14–0.78 Ra and 482–1811, respectively. These isotopic data indicate that the ore fluids are derived from a magmatic source, which is dominated by crustal components with minor mantle contribution. Air-saturated water may be also involved in the hydrothermal system during the magmatic fluids ascending or at the shallow deposit site. We suggest that the crust-mantle mixing signature of the Longquanzhan gold deposit is genetically related to the Late Cretaceous lithospheric thinning along the Tan-Lu fault zone, which triggers constantly uplifting of the asthenosphere surface and persistent ascending of the isotherm plane to form the gold mineralization-related crustal level magma sources. This genetic model can be applied, to some extent, to explain the ore genesis of other deposits near or within the Tan-Lu fault belt.


2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Oktay Canbaz ◽  
Ahmet Gökce

AbstractThe Çöpler gold deposit occurs within the stockwork of quartz hosted by the Çöpler granitoid (Eosen) and by surrounding metasediments of Keban metamorphic (Late Paleozoic - Early Mesozoic) and the Munzur limestones (Late Carboniferous - Early Cretaceous).Native gold accompanied by small amounts of chalcopyrite, pyrite, magnetite, maghemite, hematite, fahlerz, marcasite, bornite, galena, sphalerite, specular hematite, goethite, lepidochrosite and bravoitic pyrite within the stockwork ore veinlets. In addition, epidote (pistazite - zoisite), garnet, scapolite, chlorite, tremolite/actinolite, muscovite and opaque minerals were determined within the veinlets occurred in skarn zones.The study of fluid inclusions in quartz veinlets showed that the hydrothermal fluids contain CaCl2, MgCl2 and NaCl and the salinities of the two phases (L+V) inclusions range from 1.7 to 20.6% NaCl equivalent. Salinity values up to 44% were determined within the halite bearing three phases inclusions. Their homogenization temperature values have a wide range from 145.0 to 380.0°C, indicative of catathermal/hypothermal to epithermal conditions. The δ 18O and δD values of the fluid inclusion waters from the Çöpler granitoid correspond to those assigned to Primary Magmatic Water, those from the metasediments of Keban metamorphics fall outside of the Primary Magmatic and are within the Metamorphic Water field. A sample from a quartz vein within the skarn zone hosted by the Munzur limestones has a particularly low δD value.The results suggest that fluids derived from the granitoids were mixed with those derived from the metasediments of Keban metamorphics and the the Munzur limestones and resulting in quartz veinlets in these lithologies and the formation of stockwork ores. In view of the occurrence, the features described and processes envisaged for this study area may be applicable in similar settings.


2021 ◽  
Vol 116 (6) ◽  
pp. 1253-1265
Author(s):  
Xiao-Ye Jin ◽  
Jian-Xin Zhao ◽  
Yue-Xing Feng ◽  
Albert H. Hofstra ◽  
Xiao-Dong Deng ◽  
...  

Abstract The ages of Carlin-type gold deposits in the Golden Triangle of South China have long been questioned due to the general lack of minerals unequivocally linked to gold deposition that can be precisely dated using conventional radiogenic isotope techniques. Recent advances in U-Pb methods show that calcite can be used to constrain the ages of hydrothermal processes, but few studies have been applied to ore deposits. Herein, we show that this approach can be used to constrain the timing of hydrothermal activity that generated and overprinted the giant Shuiyindong Carlin-type gold deposit in the Golden Triangle. Three stages of calcite (Cal-1, Cal-2, and Cal-3) have been recognized in this deposit based on crosscutting relationships, cathodoluminescence colors, and chemical (U, Pb, and rare earth element [REE]) and isotope (C, O, Sr) compositions. Cal-1 is texturally associated with ore-stage jasperoid and disseminated Au-bearing arsenian pyrite in hydrothermally altered carbonate rocks, which suggests it is synmineralization. Cal-2 fills open spaces and has a distinct orange cathodoluminescence, suggesting that it precipitated during a second fluid pulse. Cal-1 and Cal-2 have similar carbonate rock-buffered chemical and isotopic compositions. Cal-3 occurs in veins that often contain realgar and/or orpiment and are chemically (low U, Pb, and REE) and isotopically (higher δ13C, lower δ18O and Sri values) distinct from Cal-1 and Cal-2, suggesting that it formed from a third fluid. U-Pb isotope analyses, by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for U-rich Cal-1 and Cal-2 and by LA-multicollector (MC)-ICP-MS for U-poor Cal-3, yield well-defined age constraints of 204.3 to 202.6, 191.9, and 139.3 to 137.1 Ma for Cal-1, Cal-2, and Cal-3, respectively. These new ages suggest that the Shuiyindong gold deposit formed in the late Triassic and was overprinted by hydrothermal events in the early Jurassic and early Cretaceous. Given the association of Cal-3 with orpiment and realgar, and previous geochronologic studies of several other major gold deposits in the Golden Triangle, we infer that the latest stage of calcite may be associated with an early Cretaceous regional gold metallogenic event. Combined with existing isotopic ages in the region, these new ages lead us to propose that Carlin-type gold deposits in the Golden Triangle formed during two metallogenic episodes in extensional settings, associated with the late Triassic Indochina orogeny and early Cretaceous paleo-Pacific plate subduction. This study shows that the calcite U-Pb method can be used to constrain the timing of Carlin-type gold deposits and successive hydrothermal events.


Sign in / Sign up

Export Citation Format

Share Document