scholarly journals Computer Tools for Diagnosing Citrus Leaf Symptoms (Part 1): Diagnosis and Recommendation Integrated System (DRIS)

EDIS ◽  
2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Arnold Schumann

This new 2-page article provides instructions for using the Diagnosis and Recommendation Integrated System, or DRIS, a web tool designed for analyzing leaf nutrient concentrations of Florida citrus. Written by Arnold Schumann and published by the UF/IFAS Department of Soil and Water Sciences.

HortScience ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 143-146 ◽  
Author(s):  
Timothy K. Hartz ◽  
P. R. Johnstone ◽  
E. Williams ◽  
R.F. Smith

A survey of 78 commercial iceberg and romaine lettuce (Lactuca sativa L.) fields in the coastal valleys of central California was conducted in 2004–2005. Whole leaf samples were collected at early heading and again within 1 week of harvest. Diagnosis and Recommendation Integrated System (DRIS) leaf concentration norms were calculated for N, P, K, Ca, Mg, S, B, Zn, Mn, Fe, and Cu. Iceberg and romaine lettuce had sufficiently similar leaf nutrient concentrations that the data were combined in the DRIS calculations. Optimum leaf nutrient ranges were developed using data from high-yield fields in which all nutrients were in balance according to the DRIS approach. The DRIS-derived optimum ranges for K and Ca were substantially lower than previously published leaf sufficiency ranges, whereas for the other nutrients, the DRIS optimum ranges were in close agreement. Cu was the nutrient most frequently below the optimum range in low-yield fields. Comparison of leaf nutrient concentrations with soil nutrient availability and grower fertilization practices suggested that significant improvement in fertilizer management was possible.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Arnold Schumann ◽  
Laura Waldo ◽  
Perseveranca Mungofa ◽  
Chris Oswalt

Visual identification of nutrient deficiencies in foliage is an important diagnostic tool for fine-tuning nutrient management of citrus. This new 2-page article describes a new smartphone app that uses a trained neural network to identify disease and pest symptoms on citrus leaves through your phone's camera. Written by Arnold Schumann, Laura Waldo, Perseveranca Mungofa, and Chris Oswalt, and published by the UF/IFAS Department of Soil and Water Sciences.https://edis.ifas.ufl.edu/ss691


Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 440 ◽  
Author(s):  
B. V. A. S. Manori Bambaranda ◽  
Takuji W. Tsusaka ◽  
Anong Chirapart ◽  
Krishna R. Salin ◽  
Nophea Sasaki

Aquaculture is one of the fastest growing food producing industries in the world. Aquaculture effluent contains high concentrations of inorganic nutrients. Reduction of these inorganic nutrients in aquaculture effluent is crucial for fulfilling the effluent standards or reuse of aquaculture effluent. This study investigated the effective use of green macroalga Caulerpa lentillifera as a bioremediatory species for nutrient removal from aquaculture effluent by conducting an on-station experiment and measurements. The effluent of a fish culture unit was circulated through a macroalgal culture unit every four days for a total of 60 days, allowing 15 circulations. Concentrations of inorganic nutrients (NO2−-N, NO3−-N, NH3-N, and PO43−) were measured in the integrated system consisting of a fish unit, settling unit, macroalgal unit and extra tank for water circulation in triplicates. Multiple linear regression analysis revealed that the application of the bioremediation system led to a significant reduction in nutrient concentrations within one day, and slightly further in the following two days. On average over the 15 circulations, the first one day of application decreased the concentrations of NO2−-N, NO3−-N, NH3-N, and PO43− by 0.247 mg/L, 81.6 mg/L, 0.682 mg/L, and 0.352 mg/L, respectively. Furthermore, the C:N ratio of macroalgae decreased during the 60-day application period, providing evidence of the nutrient uptake by macroalgae. Based on the European Union (EU) standard and quality criteria of France and the Joint FAO/WHO Expert Committee (JFWEC), the macroalgae grown in the integrated system were at the safe level for human consumption in terms of contents of Cd, Pb, and As. The results of our study imply that recirculating aquaculture systems utilizing C. lentillifera for biofiltration have the potential for effective treatment of aquaculture effluent integrating fish and macroalgae production.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 201 ◽  
Author(s):  
Dalong Jiang ◽  
Qinghong Geng ◽  
Qian Li ◽  
Yiqi Luo ◽  
Jason Vogel ◽  
...  

Nutrient resorption from senescing leaves is one of the plants’ essential nutrient conservation strategies. Parameters associated with resorption are important nutrient-cycling constraints for accurate predictions of long-term primary productivity in forest ecosystems. However, we know little about the spatial patterns and drivers of leaf nutrient resorption in planted forests worldwide. By synthesizing results of 146 studies, we explored nitrogen (N) and phosphorus (P) resorption efficiency (NRE and PRE) among climate zones and tree functional types, as well as the factors that play dominant roles in nutrient resorption in plantations globally. Our results showed that the mean NRE and PRE were 58.98% ± 0.53% and 60.21% ± 0.77%, respectively. NRE significantly increased from tropical to boreal zones, while PRE did not significantly differ among climate zones, suggesting differential impacts of climates on NRE and PRE. Plant functional types exert a strong influence on nutrient resorption. Conifer trees had higher PRE than broadleaf trees, reflecting the adaptation of the coniferous trees to oligotrophic habitats. Deciduous trees had lower PRE than evergreen trees that are commonly planted in P-limited low latitudes and have long leaf longevity with high nutrient use efficiency. While non-N-fixing trees had higher NRE than N-fixing trees, the PRE of non-N-fixing trees was lower than that of N-fixing trees, indicating significant impact of the N-fixing ability on the resorption of N and P. Our multivariate regression analyses showed that variations in NRE were mainly regulated by climates (mean annual precipitation and latitude), while variations in PRE were dominantly controlled by green leaf nutrient concentrations (N and P). Our results, in general, suggest that the predicted global warming and changed precipitation regimes may profoundly affect N cycling in planted forests. In addition, green leaf nutrient concentrations may be good indicators for PRE in planted forests.


HortScience ◽  
2016 ◽  
Vol 51 (11) ◽  
pp. 1378-1383
Author(s):  
Mehdi Sharifi ◽  
Julia Reekie ◽  
Andrew Hammermeister ◽  
Mohammed Zahidul Alam ◽  
Taylor MacKey

There is an increasing interest for use of cover crops in orchards; however, the species that are most likely to be successfully implemented and their impact on yield and soil productivity have not been fully explored under Maritimes climate. This study investigated the effect of various cover crops treatments on organic apple (Malus domestica Borkh cv. Honeycrisp) yield and leaf nutrient concentrations in Nova Scotia over 3 years. Various cover crop mixtures including legumes, cereals, and grasses were planted using a modified Swiss Sandwich System (SSS). The cover crops treatments did not affect apple yield. In 2012, the input of biomass to the soil was 89% and 144% greater for alfalfa (ALF) and other cover crop treatments than unseeded (CON) treatment, respectively. The pea, oats, vetch mixture (POVM) contributed 24% higher biomass N to soil compared with average of other cover crops in 2012. Soil available K concentration in the tilled strip was increased in the 3rd year of the study compared with the initial values across cover crop treatments. The red clover oats mixture (RCOM), POVM, and Triple Mix (TM) treatments appeared to add the greatest amount of available K to the soil among treatments. The CON, TM, and ALF treatments resulted in higher leaf Mn concentration in only 2012 and CON, sweet clover and oats mixture (SCOM), and ALF resulted in higher leaf P concentration in 2014, compared with other treatments. Cover crops did not compete with apple trees and their most beneficial and consistent contribution was to total C, total N, and K input to the soil.


Sign in / Sign up

Export Citation Format

Share Document