scholarly journals Pengujian Geser Limestone Untuk Menghitung Angka Keamanan Terhadap Kelongsoran Di Utama Mandala Pura Uluwatu

2019 ◽  
Vol 24 (1) ◽  
pp. 13
Author(s):  
I Nyoman Ramia ◽  
I Wayan Arya ◽  
I Wayan Wiraga ◽  
I G A G I G A G Suryanegara

The shear strength value is one of the important points in calculation of slope stability. One way to obtain the shear strength value is to do a direct shear test in laboratory. Like the cliff reinforcement study at Utama Mandala Uluwatu temple which is currently experiencing crack, it is necessary to test the shear strength of the limestone material at the cliff of the temple . There is no limestone testing equipment in the laboratory of the Civil Engineering Department, so that innovation is needed on the existing sliding test equipment. In this study innovation was carried out on how to test the soil shear strength so that it could be used to test the limestone shear strength. The test is done by moving two limestone surface that have been formed based on the mold tool which shape is circle. The shear strength slope at Uluwatu temple, which is currently experiencing crack in dry condition is . The shear strength value is used for calculating slope stability at Uluwatu Temple which is currently experiencing crack wich . The calculation used is curved slope stability by only calculate the life load and dead load. From the calculation of the stability of the slope, the safety factor is 1.15.

2013 ◽  
Vol 353-356 ◽  
pp. 735-739
Author(s):  
Xiao Ming Zhang ◽  
Shu Wen Ding ◽  
Shuang Xi Li

Development of slope disintegration is close to soil mechanic characteristics such as shear strength indices. Soil grain diameter and water content were tested. Soil direct shear test was conducted to analyze the relationship between shear strength indices and the influencing factors. The experimental data indicate that clay content and the range affect soil cohesion value and the scope. Soil cohesion increases with bulk density before 1.6g/cm3. But it decreases when the bulk after that. The results could provide a scientific basis for control of slope disintegration.


2002 ◽  
Vol 39 (4) ◽  
pp. 849-862 ◽  
Author(s):  
Jagath C Ekanayake ◽  
Christopher J Phillips

Location of the critical shear plane (CSP) plays a major role in determining landslide-initiation thresholds. Depth to the CSP increases as the soil shear strength increases. Tree roots provide a significant strength contribution to soil shear strength. Our objective is to understand how vegetation can be used to increase landslide-initiation thresholds by changing the location of the CSP. This will enable us to select and compare combinations of plant species and densities to suit any given situation to increase landslide-initiation thresholds and improve slope stability. The CSP location is estimated incorporating available root cross-sectional area – root depth data in the stability analysis in terms of energy. The energy approach has been developed to take into account the contribution of the roots to soil strength. Generalization of the original energy approach is required to enable its use outside our study areas. Once depth to the CSP is found, the time for the wetting front to reach it is found using a soil-water infiltration model. The composite model described may be used as a simple tool to choose the most appropriate plant density to maximize the stability of a given hillslope. A worked example of the model demonstrates how the approximate thresholds for different hillslopes with known plant densities under different climatic conditions are estimated.Key words: slope stability, safety factor, roots, energy, threshold.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 638 ◽  
Author(s):  
Qifeng Guo ◽  
Jiliang Pan ◽  
Meifeng Cai ◽  
Ying Zhang

As a portion of intact rock separating joint surfaces, rock bridge plays a significant role in the stability of rock slopes. This paper aims to investigate the effect of different rock bridges on the mechanical properties and failure mode of rock slope by means of the direct shear test and acoustic emission technique. Field conditions were simulated in direct shear tests which were carried out on specimens with rock bridges at different continuity rates, normal stress, arrangements, and joint angles. Experimental results indicate that the strength of specimens is controlled by the rock bridge and the structural plane. The rock bridge contributes to the strength of the specimen, while the through plane weakens the strength of the specimen. The increase of normal stress can weaken the stress concentration near the tip of the rock bridge and improve the shear resistance of the specimen. The different arrangement of rock bridge has little effect on the normal displacement of the specimen, and has a great influence on the shear strength. The shear capacity of the specimen is related to the angle of the crack, and the angle of the crack is approximately proportional to the peak shear strength. For the specimens with different joint occurrence, the mode of crack propagation at the initial stage is basically the same, and the specimen is finally damaged due to the generation of through cracks in the core area of rock bridge. The instantaneous release of the huge energy generated during the experiment along the shear direction is the root cause of the sudden failure of the rock bridge. The formation, aggregation, and transfixion process of rock bridge is of concern and has been experimentally investigated in this paper for the prevention and control of the locked section rock slope with sudden disasters.


2021 ◽  
Vol 13 (7) ◽  
pp. 3991
Author(s):  
Jeongjun Park ◽  
Indae Kim ◽  
Jeong-Ku Kang

This study investigated the effect of vegetation plant roots on the stability of the cover slopes of solid waste landfills. A large direct shear test and a root tensile strength test were conducted to quantify the effect of rooted soil of revegetation plants on the increment in shear strength of the soil as a method to protect the cover slope of solid waste landfills. In the large direct shear test, an increase in the shear strength of the ground with the presence of roots was observed, and the root reinforcement proposed in the literature was modified and proposed by analyzing the correlation between the root diameter and the tensile strength according to water content. The stability of the slope revegetation of a landfill facility, considering the root reinforcement effect of revegetation, was calculated by conducting a slope stability analysis reflecting the unsaturated seepage analysis of rainfall conditions for various analysis conditions, such as the gradient, the degree of compactness, the thickness of the cover, and the rooted soil depth of the landfill facility.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yanhai Wang ◽  
Jianlin Li ◽  
Qiao Jiang ◽  
Yisheng Huang ◽  
Xinzhe Li

Under the action of rainwater seepage, geological origin, and human activities, the soil shear strength parameters will have spatial variability along the slope direction. After collecting samples of silty clay at a slope in the Three Gorges Reservoir area as the research object, not only the large-scale direct shear test was carried out on the site but also the direct shear test, water content test, density test, and particle grading analysis test were carried out in the laboratory with the undisturbed soil. The variation law and mechanism of soil shear strength parameters along slope were studied. The results indicate the following: (1) The coefficient of variation of shear strength parameters along the slope is relatively large. With the decrease of the elevation of the test location, the cohesion value tends to be strengthened, while the friction angle tends to degrade. (2) The mechanism of the variation law of soil shear strength parameters along the slope, which is mainly due to the decrease of the elevation, the decrease of the edges and angles between the particles, and the increase of the clay content is determined. (3) The variation model of shear strength parameters along the slope is proposed, which can provide a reference for relevant projects.


2020 ◽  
pp. 18-26
Author(s):  
ZONG GANG ◽  
FU JIAJIA ◽  
WANG YAO

Rainfall is the main cause of landslides, the two are closely related. Based on the theory of saturatedunsaturated seepage and the theory of unsaturated soil shear strength, this paper makes an in-depth comparatve analysis on the infuence of short-term heavy rainfall and long-term weak rainfall on slope stability. The results show: The soil above the slope is more likely to reach saturaton under short-term heavy rainfall, while the infuence of long-term weak rainfall on the slope soil is deeper and the stability is greatly reduced. However, landslides with long periods of weak rainfall are more dangerous. In additon, the method of determining the critcal rainfall of a slope for landslide is obtained, and the safety status of the slope can be directly judged by comparing the actual rainfall with the critcal rainfall, and the classifcaton standard of the safety grade of a specifc slope is further obtained, which can provide reference for landslide preventon and treatment.


2012 ◽  
Vol 204-208 ◽  
pp. 241-245
Author(s):  
Yang Jin

The stability of soil slope under seepage is calculated and analyzed by using finite element method based on the technique of shear strength reduction. When the condition of seepage or not is considered respectively, the critical failure state of slopes and corresponding safety coefficients can be determined by the numerical analysis and calculation. Besides, through analyzing and comparing the calculation results, it shows that seepage has a negative impact on slope stability.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yanhui Cheng ◽  
Weijun Yang ◽  
Dongliang He

Structural plane is a key factor in controlling the stability of rock mass engineering. To study the influence of structural plane microscopic parameters on direct shear strength, this paper established the direct shear mechanical model of the structural plane by using the discrete element code PFC2D. From the mesoscopic perspective, the research on the direct shear test for structural plane has been conducted. The bonding strength and friction coefficient of the structural plane are investigated, and the effect of mesoscopic parameters on the shear mechanical behavior of the structural plane has been analyzed. The results show that the internal friction angle φ of the structural plane decreases with the increase of particle contact stiffness ratio. However, the change range of cohesion is small. The internal friction angle decreases first and then increases with the increase of parallel bond stiffness ratio. The influence of particle contact modulus EC on cohesion c is relatively small. The internal friction angle obtained by the direct shear test is larger than that obtained by the triaxial compression test. Parallel bond elastic modulus has a stronger impact on friction angle φ than that on cohesion c. Under the same normal stress conditions, the shear strength of the specimens increases with particle size. The shear strength of the specimen gradually decreases with the increase of the particle size ratio.


2021 ◽  
Vol 3 (2) ◽  
pp. 74-80
Author(s):  
Talal Masoud

The results of the direct shear test on Jerash expansive soil show the effect of the initial water content on the cohesion (c) and on the angel of internal friction ( ) [shear strength parameters].it show that, as the initial water increase, the cohesion (c) of Jerash expansive soil also increase up to the shrinkage limit, after that increase of water even small amount, decrease the cohesion of the soil. On the other hand, the results of direct shear test show also  that as the water content increase, the angle of internal friction ( )remain unchanged up to shrinkage limit , any increase of water cause a large decrease on the angle of internal friction of Jerash expansive soil.


Sign in / Sign up

Export Citation Format

Share Document