scholarly journals Synthesis of ZnO nanorods on ZnO/ITO seed layer by electrochemical method and its application in solar cell device

2013 ◽  
Vol 16 (4) ◽  
pp. 5-12
Author(s):  
Hoang Cao Son Tran ◽  
Khac Top Le ◽  
Duc Hao Nguyen ◽  
Thi Dong Tri Nguyen ◽  
Kien Quoc Luu ◽  
...  

In this paper, we study on the effects of ZnO nanorods /seed ZnO on properties of hybrid solar cells. ZnO nanorods fabricated by electrochemical method of two-step stable flow of liquid Zn(NO3)2. 6H2O (0.005 M) and C6H12N4 (0.005 M). Morphology and optoelectronic properties of ZnO nanorods were studied by SEM images, UV-VIS transmission spectra, X-ray diffraction and photoluminescence spectrum. Elaboration of hybrid solar cells by inserting ZnO nanorods on organic photoactive layer of P3HT:PCBM and ITO, as result the solar cell conductivity performance is significantly improved. Experimental results show that ~ 1,392 mA/cm2 Jsc, Voc ~ 0.49 V, FF = 0.32, and PCE = 0.23%.

2016 ◽  
Vol 675-676 ◽  
pp. 53-56
Author(s):  
Supawadee Pokai ◽  
Puenisara Limnonthakul ◽  
Mati Horprathum ◽  
Sukon Kalasung ◽  
Pitak Eiamchai ◽  
...  

Zinc oxide (ZnO) nanorods (NRs) promise high potentials in several applications, such as photovoltaic device, thermoelectric device, sensor and solar cell. In this research, the vertical alignment of ZnO NRs was fabricated by hydrothermal method with various precursor concentrations and growth time on different seed layers (ZnO and Au), which deposited on silicon wafer substrate (100). The crystalline structure and morphology of ZnO NRs have been characterized by x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) techniques, respectively. The x-ray diffraction pattern shows that the prepared samples have a strong preferred orientation (002) plane. FE-SEM images of the ZnO NRs, it found that the density and aspect ratio were strongly influenced by the seed layer and precursor concentration. In addition, the aspect ratio of ZnO NRs was increased with increasing growth time. This study provides a cost effective method for the fabrication of well aligned ZnO NRs for nano-electronic devices.


2018 ◽  
Vol 766 ◽  
pp. 217-222
Author(s):  
Suphaporn Daothong

Iron oxide nanowires were synthesized on stainless steel mesh substrate using the thermal oxidation process at the varying temperature of 750°C for 60 min. The samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD pattern showed that the iron oxide nanowires exhibited the structure of alpha-Fe2O3 (hematite). SEM images indicated that the diameter and the length of the nanowires were 80 to 285 nm and more than 5 μm, respectively. The dye-sensitized solar cell (DSC) properties based on the nanowires substrate was also studied. It was found that the power conversion efficiency (η) of the device was 0.11%.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 767 ◽  
Author(s):  
Luis Sanchez ◽  
Carlos Castillo ◽  
Willy Cruz ◽  
Bryan Yauri ◽  
Miguel Sosa ◽  
...  

ZnO nanorods (NRs) films, nitrogen-doped (ZnO:N), and ZnO doped with nitrogen and decorated with silver nanostructures (ZnO:N-Ag) NRs films were vertically supported on undoped and N doped ZnO seed layers by a wet chemical method. The obtained films were characterized structurally by X-ray diffraction. Morphological and elemental analysis was performed by scanning electron microscopy, including an energy dispersive X-ray spectroscopy facility and their optical properties by Ultraviolet-Visible Spectroscopy. Analysis performed in the NRs films showed that the nitrogen content in the seed layer strongly affected their structure and morphology. The mean diameter of ZnO NRs ranged from 70 to 190 nm. As the nitrogen content in the seed layer increased, the mean diameter of ZnO:N NRs increased from 132 to 250 nm and the diameter dispersion decreased. This diameter increase occurs simultaneously with the incorporation of nitrogen into the ZnO crystal lattice and the increase in the volume of the unit cell, calculated using the X-ray diffraction patterns and confirmed by a slight shift in the XRD angle. The diffractograms indicated that the NRs have a hexagonal wurtzite structure, with preferential growth direction along the c axis. The SEM images confirmed the presence of metallic silver in the form of nanoparticles dispersed on the NRs films. Finally, the degradation of methyl orange (MO) in an aqueous solution was studied by UV-vis irradiation of NRs films contained in the bulk of aqueous MO solutions. We found a significant enhancement of the photocatalytic degradation efficiency, with ZnO:N-Ag NRs film being more efficient than ZnO:N NRs film, and the latter better than the ZnO NRs film.


2012 ◽  
Vol 1432 ◽  
Author(s):  
Josephine J. Sheng ◽  
David. C. Chapman ◽  
David M. Wilt ◽  
Stephen J. Polly ◽  
Christopher G. Bailey ◽  
...  

ABSTRACTThe insertion of nanostructured materials (such as quantum wells, wires, and dots) into the intrinsic region of p-i-n solar cells introduces an intermediate band within the bandgap of the host material. It has been shown that the sub-bandgap conversion provided by the nanostructured materials, enhances the short circuit current as well as the overall efficiency of InAs quantum dots (QD) imbedded in GaAs superlattice (SL) solar cells [1]. As a contender for space applications, it is necessary to subject these solar cell structures to temperatures encountered in the Low Earth Orbit (LEO), probing for any material degradation. Herein, we focus on temperature dependent characterization using high resolution X-ray diffraction (HRXRD) of InAs QD enhanced GaAs solar cell structures with varying growth parameters. The structures characterized can be classified into three groups: (1) GaP strain compensation coverage, (2) GaAs barrier coverage, and (3) InAs coverage for QD formation. HRXRD rocking curves of each structure focusing around the GaAs peak are analyzed at a range of temperatures up to 200˚C. Although no noticeable shifts in the SL peaks are detected, interfacial diffusion decreased the resolution of fringes produced by reflections at the SL interfaces in test structures with varying InAs QD coverage. Unbalanced strain in the same structures shows a distortion in the GaAs peaks.


2021 ◽  
Author(s):  
◽  
Alexander Riches

Copper zinc tin sulphide (CZTS) is a p-type semiconductor that can be used as the light absorbing layer in thin-film heterojunction solar cells, with the specific advantage of being comprised only of non-toxic, earth abundant elements. There are many methods through which CZTS can by synthesised, one of which is electrodeposition, which is an industrially scalable process used extensively in the steel industry. This thesis details a study of the electrodeposition of stacked elemental layers and their subsequent sulphurisation in the manufacture of CZTS. A range of electrodeposition parameters are tested for each elemental layer, each of which is characterised through a range of techniques, including scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), which enables the development of optimised conditions. It was found that the deposition of copper favoured potentiostatic deposition, with a smooth granular structure being deposited onto molybdenum at -0.98V vs Hg|HgO from a sodium hydroxide based electrolyte, while tin required galvanostatic deposition from a methanesulfonic acid electrolyte in order to return consistent results. This was optimised to an initial high current density period of -20 mA cm-2 for 1.2 s to nucleate grains, falling to -5 mA cm-2 to minimise hydrogen evolution thereafter. Trial of numerous electrolyte formulae found that an acid-sulphate electrolyte gave the most promising results, with galvanostatic deposition at -50 mA cm-2 being found to be suitable. Optimised stacked elemental layer precursors are then progressed to the annealing and sulphurisation stage for conversion into CZTS. One key area of study is the inclusion of a pre-alloying annealing step prior to sulphurisation, and its effect on the morphology of the CZTS films and subsequent solar cell device performance. Pre-alloyed metallic films are extensively characterised by means of X-ray photoelectron spectroscopy (XPS) depth profiling, X-ray diffractometry (XRD) and EDS elemental mapping as part of an optimisation process, and Raman spectroscopy is used in conjunction with XRD and EDS in the analysis of CZTS films sulphurised in a rapid thermal processing (RTP) furnace. A pre-alloying step at 300 °C for 10 minutes was found to be sufficient for the deposited elements to fully intermix. It was discovered that not only does the inclusion of an optimised pre-alloying step improve the morphology of the CZTS films and the subsequent solar cell performance, but the integration of a pre-alloying stage with the sulphurisation in a single furnace operation does not lead to any evidence of disadvantage when compared with pre-alloying and sulphurisation processes conducted separately. In fact, 8 out of 45 cells with an integrated pre-alloying process achieved 0.1% efficiency or greater, compared to 5 out of 45 for those that underwent a separate pre-alloying process, and 0 out of 45 for those that received no pre-alloying process. This positive result for the integration of the pre-alloy offers simplification of the manufacturing process for a potential future scaled-up CZTS solar cell device.


2013 ◽  
Vol 16 (4) ◽  
pp. 13-21
Author(s):  
Hoang Cao Son Tran ◽  
Khac Top Le ◽  
Thi Dong Tri Nguyen ◽  
Luong Cuong Hoang ◽  
Kien Quoc Luu ◽  
...  

In this paper we investigated the effect of Hexamethylenetetramine (HMTA, C6H12N4) concentration on the growth of ZnO nanorods on ITO substrates and the influence of the ZnO seed layer on its orientation growth. ZnO nanorods were synthesized by the two-step method of stable flow electrochemical method of saline solution Zn(NO3)2 at 90oC. As result, the high hexagonal crystalline ZnO nanorods were well oriented according to the (002) lattice network. The change of amperage and electrolysis time have show the effetive control of morphology and size of ZnO nanorods which has been studied by XRD and SEM images


SAINSTIS ◽  
2013 ◽  
Author(s):  
Rachmawati Ningsih ◽  
Hastuti Hastuti

<p>One of the alternative energy potential to be developed to overcome  energy crisis in the world is an organic solar cells. In this research has been conducted by making a series of Dyes Sensitized Solar Cells (DSSC) using an organic dye from crude extracts of black tea (Camellia sinensis) and ink cuttlefish (Sepia acuelata). Solar cell system consisting of crystalline TiO2, glass conductors, dyes,</p> <p>a   electrolyte   solution   I-/I3- and   carbon   electrodes.   TiO2 crystals   were</p> <p>characterized using X-ray diffraction. Crude extracts of black tea and cuttlefish</p> <p>ink absorption wavelength was analyzed using UV-Vis spectrophotometer. The series of solar cells are measured values of voltage and electric current.</p> <p>The results of X-ray diffraction showed that crystalline TiO2 including anatase crystalline phase and a crystal size is 2.6 nm. The results of UV-Vis spectra of crude extracts of black tea and cuttlefish ink shows the absorption wavelength range in a row of 232-240 nm and 203-207 nm.</p> <p>Large solar cell power supply voltage without soaking, in a room without light and under a halogen lamp is 0.014 Volt and 0.023 Volt. Large voltage solar cells soaked in crude extracts of black tea for 1 hour at room without light and under a halogen lamp is 0.364 Volt and 0.401 Volt. While that is soaked for 2 weeks is</p> <p>0.113 Volts and 0.18 Volts.</p>


2013 ◽  
Vol 718-720 ◽  
pp. 3-6
Author(s):  
Masaya Miwa ◽  
Hideo Furuhashi

P3HT and P3HT/PCBM organic films are prepared by drop casting and spin coating and are used to fabricate solar cells on ITO. The solar cell properties are investigated by UVvisible absorption spectroscopy and X-ray diffraction (XRD). and their morphologies are discussed. The results indicate that the molecular chains of the P3HT film prepared by drop casting are perpendicular to the substrate, whereas those of the film prepared by spin coating are oriented parallel to the substrate. P3HT/PCBM films are prepared by spin coating using different PCBM/P3HT ratios.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
S. Kerli ◽  
Ü. Alver

The mixture of ZnO and NiO effect on solar cell has been investigated. ZnO and NiO particles were produced by hydrothermal method and the produced particles were annealed at 500°C for 1 hour. Crystal structure and morphological properties of particles were examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD measurements showed that ZnO particles have a hexagonal wurtzite structure and NiO particles have a cubic structure. SEM results show that both ZnO and NiO particles are the form of nanoparticles. Dye-sensitized solar cells were fabricated by N-719 (Ruthenium) dyes and mixing ZnO/NiO particles in different ratios, 100/0, 50/50, and 0/100. It was observed that the solar cells made with ZnO have the highest performance with the efficiency of 0.542%. In addition, it was observed that when amount of NiO ratio increases in the mixture of ZnO/NiO, the efficiencies of DSSCs were observed to decrease.


2020 ◽  
Vol 19 (1) ◽  
pp. 87-93
Author(s):  
Gerardo Gordillo-Guzmán ◽  
Ophyr Virgüez-Amaya ◽  
Camilo Otálora-Bastidas ◽  
Clara Calderón-Triana ◽  
César Quiñones-Segura

This work report results concerning the effect that the substitution of the methylammonium cation by the formamidinium cation causes on the properties of FAx(MA1-x)PbI3films synthesized by spin coating in one step. For that, it was conducted a study to establish the influence of the composition of the FAx(MA1-x)PbI3films on their optical, structural and morphological properties, determined through spectral transmittance, atomic force microscopy and X-ray diffraction measurements. Correlating parameters of synthesis with results of the study of properties performed, we were able to get conditions to grow FAx(MA1-x)PbI3films with improved optical gap, microstructure and morphology, what allows to think that this compound is suitable to be used as the active layer in hybrid solar cells.


Sign in / Sign up

Export Citation Format

Share Document