scholarly journals Fabrication, characterization, and adsorption capacity of Fe3O4/graphene oxide nanocomposites for nickel removal

2016 ◽  
Vol 19 (3) ◽  
pp. 60-68
Author(s):  
Hieu Huu Nguyen ◽  
Nam Minh Hoang ◽  
Diem Thi Hoai Phan

In this research, graphene oxide (GO) was synthesized via modified Hummers’ method and for the preparation of Fe3O4/GO nanocomposites by impregnation method. Characterization of the nanocomposites was performed by X–ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscope, specific surface area, and vibrating sample magnetometer. The concentration of Ni (II) ion in solutions was determined using UV-Visible spectrophoto-meter. The adsorption capacity for Ni (II) removal was examined with respect to pH effect, kinetic data and equilibrium isotherms in batch experiments. The maximum adsorption capacity of the Fe3O4/GO estimated with the Langmuir-isotherm model for Ni (II) was 27.62 mg/g at room temperature.

2017 ◽  
Vol 76 (9) ◽  
pp. 2526-2534 ◽  
Author(s):  
Meimei Zhou ◽  
Weizhen Tang ◽  
Pingping Luo ◽  
Jiqiang Lyu ◽  
Aixia Chen ◽  
...  

Abstract Ureido-functionalized mesoporous polyvinyl alcohol/silica composite nanofibre membranes were prepared by electrospinning technology and their application for removal of Pb2+ and Cu2+ from wastewater was discussed. The characteristics of the membranes were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and N2 adsorption-desorption analysis. Results show that the membranes have long fibrous shapes and worm-like mesoporous micromorphologies. Fourier transform infrared spectroscopy confirmed the membranes were successfully functionalized with ureido groups. Pb2+ and Cu2+ adsorption behavior on the membranes followed a pseudo-second-order nonlinear kinetic model with approximately 30 minutes to equilibrium. Pb2+ adsorption was modelled using a Langmuir isotherm model with maximum adsorption capacity of 26.96 mg g−1. However, Cu2+ adsorption was well described by a Freundlich isotherm model with poor adsorption potential due to the tendency to form chelating complexes with several ureido groups. Notably, the membranes were easily regenerated through acid treatment, and maintained adsorption capacity of 91.87% after five regeneration cycles, showing potential for applications in controlling heavy metals-related pollution and metals reuse.


2015 ◽  
Vol 18 (4) ◽  
pp. 212-220
Author(s):  
Hieu Huu Nguyen ◽  
Kieu Thi Minh Dang ◽  
Diem Thi Hoai Phan

In this research, Fe3O4/graphene oxide nanocomposite was synthesized as an adsorbent for removal of Pb2+ from contaminated wastewater. According to this route, graphene oxide (GO) was synthesized from graphite via a modified Hummers method and for the preparation of Fe3O4/GO nanocomposite by impregnation. The result of XRD analysis showed that Fe3O4/GO nanocomposite has characteristic diffraction peaks corresponding to Fe3O4 and GO. Analysis of FTIR spectra indicated that the specific functional groups of Fe3O4 and GO in the nanocomposite. SEM and TEM images presented Fe3O4 nanoparticles in the average size of 10 nm are distributed on the surface of GO sheets. The BET specific surface area of the nanocomposite is about 72.9 m2/g. The TGA analysis demonstrated the thermal property of Fe3O4/GO nanocomposite. This material showed excellent magnetic behavior and therefore after adsorbing it can be recovered by applying an external magnetic field. The adsorption capacity of this nanocomposite was investigated and the concentration of residual Pb2+ ions in the solution was measured using ICP-OES. Equilibrium adsorption data were fitted by Langmuir isotherm model and the predicted maximum adsorption capacity was 54.64 mg/g.


2016 ◽  
Vol 25 (6) ◽  
pp. 096369351602500 ◽  
Author(s):  
Ruimin Fu ◽  
Mingfu Zhu

Nowadays, the hummers method for preparation of graphene oxide (GO) was improved. The grapheme oxide @ Fe3O4 magnetic nanocomposites were synthesized by co-precipitation method. After analysing the morphology and structure of obtained nanocomposites by X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared (FT-IR) spectroscopy, the result was shown as follows. The particle size of Fe3O4 in nanocomposites is 30 nm. Many functional groups are found in grapheme oxide, and such groups could be used to bind with the drug. In the test for magnetic properties, the nanocomposites gathered rapidly in the vicinity of the permanent magnet. The nanocomposites, with high superparamagnetism, can be used in the following applications: drug targeting transports, drug carrier, and diagnosis assistant system.


2015 ◽  
Vol 72 (7) ◽  
pp. 1217-1225 ◽  
Author(s):  
Fan Zhang ◽  
Shengfu He ◽  
Chen Zhang ◽  
Zhiyuan Peng

Graphene oxide/polyamidoamines dendrimers (GO/PAMAMs) composites were synthesized via modifying GO with 2.0 G PAMAM. The adsorption behavior of the GO/PAMAMs for acid Bordeaux B (ABB) was studied and the effects of media pH, adsorption time and initial ABB concentration on adsorption capacity of the adsorbent were investigated. The optimum pH value of the adsorption of ABB onto GO/PAMAMs was 2.5. The maximum adsorption capacity increased from 325.78 to 520.83 mg/g with the increase in temperature from 298 to 328 K. The equilibrium data followed the Langmuir isotherm model better than the Freundlich model. The kinetic study illustrated that the adsorption of ABB onto GO/PAMAMs fit the pseudo-second-order model. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.


2018 ◽  
Vol 54 (5A) ◽  
pp. 9
Author(s):  
Tran Quang Dat

Cu0.5Ni0.5Fe2O4 – reduced graphene oxide composites (CNF-rGO) as an efficient adsorbent for the adsorption of uranium (VI) have been synthesized by a two-steps methods. The structures and the physicochemical properties of adsorbents are characterized by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (RAMAN) and Vibrating sample magnetometer (VSM) measurement. It was found that rGO were exfoliated and decorated homogeneously with CNF nanoparticles having diameters of 20 nm. The saturated magnetization (Ms) value was estimated to be 60 emu/g, remanences (Mr) and coercive forces (Hc) near to zero, indicating that obtained material is superparamagnetic. The pH effect, contact time and adsorption isotherms were examined in batch experiments. The adsorption isotherm agreed well with the Langmuir model, having a maximum adsorption capacity of 256 mg/g, at pH = 6, T = 298 K.


2021 ◽  
Author(s):  
Adeel Mustafa ◽  
Nazia Yaqoob ◽  
Maheen Almas ◽  
Shagufta Kamal ◽  
Khalid Mahmood Zia ◽  
...  

Abstract In this study graphene oxide (GO) reinforced polyvinyl alcohol (PVA) composites hydrogels were synthesized and used as efficient adsorbents for Drimarene Brilliant Blue K-4BL. GO nanoparticles (NPs) were synthesized by modified Hummer’s method. The composites were characterized by Fourier transform infrared spectroscopy (FT-IR), Thermo-gravimetric analysis (TGA), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed homogeneous dispersion of reinforcement in the synthesized composites. Moreover thermal stability of the composites was significantly enhanced by the addition of graphene oxide nanoparticles. The synthesized composites were used for the removal of Drimarene brilliant Blue from model waste water. The effect of pH, content of GONPs and initial concentration of Drimarene Brilliant Blue K-4BL on the adsorption capacity of synthesized GO/PVA composites were investigated. The equilibrium isothermal data were studied by applying Langmuir and Freundlich isotherm models. Results demonstrated that the adsorption process is well described by the Langmuir adsorption isotherm. According to the Langmuir model, maximum adsorption capacity i.e. 32mg/g was obtained at 0.7% GO/PVA composite. From the kinetic study it was concluded that pseudo-second-order model is the best fitted. Synthesized composites showed excellent reusability (almost 95 %) for the adsorption of Drimarene Brilliant Blue K-4BL after four successive cycles of adsorption and desorption. Thus, the GO/PVA composites demonstrated a great potential in terms of cost effectiveness, efficiency and reusability for the removal of Drimarene Brilliant Blue K-4BL dye.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1580
Author(s):  
Franklin Gordon-Nuñez ◽  
Katherine Vaca-Escobar ◽  
Milton Villacís-García ◽  
Lenys Fernández ◽  
Alexis Debut ◽  
...  

Lead ion in drinking water is one of the most dangerous metals. It affects several systems, such as the nervous, gastrointestinal, reproductive, renal, and cardiovascular systems. Adsorption process is used as a technology that can solve this problem through suitable composites. The adsorption of lead (Pb(II)) on graphene oxide (GO) and on two goethite (α-FeOOH)/reduced graphene oxide (rGO) composites (composite 1: 0.10 g GO: 22.22 g α-FeOOH and composite 2: 0.10 g GO: 5.56 g α-FeOOH), in aqueous medium, was studied. The GO was synthesized from a commercial pencil lead. Composites 1 and 2 were prepared from GO and ferrous sulfate. The GO and both composites were characterized by using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), Raman spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). The adsorption capacity of Pb(II) on the GO and both composites was evaluated through adsorption isotherms. Composite 1 presented a significant agglomeration of α-FeOOH nanorods on the reduced graphene oxide layers. Meanwhile, composite 2 exhibited a more uniform distribution of nanorods. The adsorption of Pb(II) on the three adsorbents fits the Langmuir isotherm, with an adsorption capacity of 277.78 mg/g for composite 2200 mg/g for GO and 138.89 mg/g for composite 1. Composite 2 emerged as a highly efficient alternative to purify water contaminated with Pb(II).


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3092
Author(s):  
Jianchuan Sun ◽  
Awang Gao ◽  
Xuhui Wang ◽  
Xiangyu Xu ◽  
Jiaqing Song

In this work, an organic-free method was used to synthesize different morphological boehmite by controlling the crystallization temperature, and alumina adsorbents were obtained by baking the boehmites at 500 °C. The alumina adsorbents were characterized by X-ray diffraction (XRD), High resolution transmission electron microscope (HRTEM), Fourier transform infrared (FT-IR), N2 adsorption/desorption analysis, and their phosphorus adsorption properties were comparatively investigated by a series of experiments. The results showed that the self-prepared alumina adsorbents were lamellar and fibrous material, while the industrial adsorbent was a granular material. The lamellar alumina adsorbents had the largest specific surface area and showed better phosphorus adsorption capacity. The maximum adsorption capacity could reach up to 588.2 mg·g−1; and only 0.8 g·L−1 of lamellar alumina adsorbent is needed to treat 100 mg·L−1 phosphorus solution under the Chinese level 1 discharge standard (0.5 mg·L−1). Further investigation suggests that the lamellar alumina adsorbent kept high adsorption capacity in various solution environments.


2018 ◽  
Vol 37 (1-2) ◽  
pp. 77-94 ◽  
Author(s):  
Soumahoro Gueu ◽  
Gisèle Finqueneisel ◽  
Thierry Zimny ◽  
Danièle Bartier ◽  
Benjamin Kouassi Yao

Adsorption behaviours of humic acid on three natural clays from Ivory Coast were studied. In order to investigate the adsorption mechanism, characterization of clays and the humic acid–clay complex was conducted by using various analytical methods (attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), specific surface area analysis (BET) and chemical composition). As a result, adsorption process showed that the maximum adsorption capacity of humic acid was achieved at pH = 3 and was found to be to 115 mg/g obtained for the best sample. For all clays, the adsorption was found to be strongly dependent on pH and well fitted by the Langmuir model. In addition, it was shown that the adsorption capacity was linked to the kaolinite content of each sample. The results showed that humic acid adsorption onto clay was made via electrostatic interactions, ligand exchange and hydrophobic interactions. This study showed that clays are valuable adsorbents for the removal of humic acid.


2013 ◽  
Vol 639-640 ◽  
pp. 1300-1306
Author(s):  
Zhen Ping Tang ◽  
Hui Ling ◽  
Shui Bo Xie ◽  
S.Y. Li ◽  
J.S. Wang ◽  
...  

Fe-immobilized bentonite, prepared with bentonite and FeCl3 was used for the adsorption of uranium(VI) in this study, solution pH, ion strength, contact time and temperature were investigated, structural characterization of Fe-immobilized bentonite was assayed by X-ray Diffraction and Fourier Transform Infrared Spectroscopy. Results indicated that the adsorption capacity were strongly affected by the solution pH and ion strength, the adsorption efficiency was 91.8% when pH value was 6 and ion strength was 0.01 mol•L-1, higher or lower pH did not favor the U(VI) adsorption. The adsorption mechanism was discussed by the views of reactive kinetics and thermodynamics along with Scanning Electron Microscope. The adsorption kinetics process was fitted well with the second-order kinetic equation, when the initial U(VI) concentration was less than 38.08mg/L, Langmuir equations could describe the adsorption isotherm of U(VI) well with the maximum adsorption capacity of 169.5mg/g at 303K


Sign in / Sign up

Export Citation Format

Share Document