scholarly journals Application of constructed wetlands using Vetiveria zizanioides and Phragmites australis in the landfill leachate treatment

2019 ◽  
Vol 2 (5) ◽  
pp. 177-183
Author(s):  
Le Ai Nguyen ◽  
Trinh Thi Mong Le

Constructed wetlands have been widely applied for removing pollutants in the leachate recently. In this study, constructed wetland system combined vertical flow and horizontal flow, using Vetiveria zizanioides L. and Phragmites australis, was set in a laboratory scale to assess the leachate treatment ability. The landfill leachate was added to the system with increasing concentration to evaluate the treatment ability by the time. The results showed that the removal efficiency reached the highest when the COD concentration was 575 mg/L, including BOD5 (96.48%), COD (83.24%), total nitrogen (91.43%), total phosphorus (77.84%), ammonia nitrogen (86.47%), and color (87.91%). Furthermore, the treated effluent quality reached the class A of the Vietnamese standard on industrial wastewater quality. Beside, when physicochemically treated leachate (coagulation – flocculation) (COD concentration was 1255.50 mg/L), was added to the system, the removing efficiencies remained stable by the time, with the efficiency of ammonia nitrogen removing (93.48%), BOD5 (94.86%), total phosphorus (96.67%), total nitrogen (95.81%). Besides, the treated effluent quality reached the class B of the Vienamese standard on industrial wastewater quality. On other hand, COD and color removing efficiencies were also high at the first stage and tended to reduce rapidly by the time. Therefore, the EM called Bayer Pond Plus added to the system could increase and substained the removing efficiencies of COD (66.61%), color (81.40%). The results of this study showed that constructed wetland system had potential in the landfill leachate treatment.

2021 ◽  
Author(s):  
Nan Jiang ◽  
Li Huang ◽  
Manhong Huang ◽  
Teng Cai ◽  
Jialing Song ◽  
...  

Abstract In this study, thin-film composite with embedded polyester screen, cellulose triacetate with a cast nonwoven and cellulose triacetate with embedded polyester screen (CTA-ES) were examined as the intermediate membranes in osmotic microbial fuel cells (OsMFCs). The reactors were fed with actual landfill leachate and the performance was studied in two operation modes: active layer facing draw solution and active layer facing feed solution (AL-FS). The OsMFC with CTA-ES exhibited the best energy generation (maximum power density: 0.44 W m-2) and pollutant removal efficiency (ammonia nitrogen: 70.12 ± 0.28%, total nitrogen: 74.04 ± 0.33%) in the AL-FS mode, which could be ascribed to the lowest internal resistance (236.75 ohm) and highest microbial richness. Pseudomonas was the highest proportion of microbial in OsMFCs. The results of this study has demonstrated the potential of OsMFCs for landfill leachate treatment.


2015 ◽  
Vol 26 (3) ◽  
pp. 49-53 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Aleksandra Krzywicka

Abstract The goal of this article was to compare the efficiency of Fenton and photo-Fenton reaction used for stabilised landfill leachate treatment. The mass ratio of COD:H2O2 was fixed to 1:2 for every stages. The dose of reagents (ferrous sulphate/hydrogen peroxide) was different and ranged from 0.1 to 0.5. To determine the efficiency of treatment, the BOD (biochemical oxygen demand COD (chemical oxygen demand), TOC (total organic carbon) , ammonia nitrogen and BOD/COD ratio was measured. The experiment was carried out under the following conditions: temperature was 25ºC, the initial pH was adjusted to 3.0. Every processes were lasting 60 minutes. The most appropriate dose of reagents was 0.25 (Fe2+/H2O2). It was found that the application of UV contributed to increase of COD, TOC and ammonia removal efficiencies by an average of 14%.


2013 ◽  
Vol 295-298 ◽  
pp. 1472-1477
Author(s):  
Tao Yu ◽  
Tao Huang ◽  
Yin Xi Pan ◽  
Lin Hai Yang

The technology used the coagulation-sedimentation + electro-oxidation joint reactor has been studied to treat landfill leachate. First adding FeCl30.4g/L into all leachate for coagulation and sedimentation, its CODcr elimination rate can achieve 35%, but does have no effect on ammonia nitrogen. Then using electro-oxidation reactor to deal with effluent water, the reaction order of electro-oxidation reactor is first-level, as the reaction conditions are 20mA/cm2 of electric current density, 140min of reaction time, the leachate CODcr elimination rate can reach to above 90%, the ammonia nitrogen elimination rate meets to 98% around. Using coagulation-sedimentation + electro coagulation joint reactor to treat landfill leachate can get stable effluent water quality with good treatment effect, has very high elimination efficiency of CODcr and ammonia nitrogen. It is a suitable treatment technology for landfill leachate.


2005 ◽  
Vol 52 (12) ◽  
pp. 243-250 ◽  
Author(s):  
Z. Ujang ◽  
E. Soedjono ◽  
M.R. Salim ◽  
R.B. Shutes

Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.


1995 ◽  
Vol 32 (3) ◽  
pp. 119-128 ◽  
Author(s):  
Craig D. Martin ◽  
Keith D. Johnson

Recently in the USA, the Solid Waste Industry has undergone specific changes in landfill regulations. The Federal Resource Conservation and Recovery Acts (RCRA); and EPA subtitle D regulations, as well as stringent State regulations, impose minimum criteria for municipal solid waste facilities in the areas of location, operation, groundwater monitoring, and leachate management. In conjunction with these State and Federal mandates the University of West Florida developed a leachate treatment technique utilizing extended aeration and surface-flow constructed wetlands. Sampling of water quality has occurred monthly since February 1992. Parameters examined include: Nitrogen (NH3,), Total Suspended Solids (TSS), Total Phosphate (TPO4), Total Organic Carbon (TOC), pH, Alkalinity, and Chlorides. Chemical Oxygen Demand (COD), Total and Fecal Coliforms, Priority Pollutant Metals, and limited organic analytes are sampled on a less frequent basis. Samples are collected at a raw leachate site (L0), primary aerated lagoon (L1), and 6 stations within the 1.1 hectare constructed wetland complex (S1; W1; W3; W5; W7; W9) and one sandfilter (SF) location. Results thus far indicate removal percentages of the tested analytes average between 64% and 99%. This data suggests various physical, microbiological and chemical processes occurring within the aerated lagoon and constructed wetlands can provide an effective alternative to standard techniques for landfill leachate treatment and disposal. The methods as described have proven to be ideal for the circumstances occurring at the Perdido Landfill.


Author(s):  
Irvan Dahlan

Landfilling is one of the most important methods for disposal of solid waste in many countries. One of the most obvious problems associated with the landfilling practice is the generation of leachate. This chapter reviews case studies on the on-site treatment of leachates using various technologies in selected European and Asian countries. It was shown that the generation of leachate varies widely in both quantity and quality in European and Asian countries. Biological treatment and membrane technology show very high efficiencies in treating leachate generated from Odayeri landfill (in European side of Turkey) and Komurcuoda landfill (at Asian side of Turkey). Leachates from Arpley landfill (UK) and Bukit Tagar landfill (Malaysia) were successfully treated using sequence batch reactor (SBR). Fairly good treatment efficiencies were obtained using constructed wetlands (CWs) in treating Gdansk-Szadolki landfill leachate in Poland. Furthermore, the use of coagulation, filtration and membrane technologies has been proven effectively in treating Nonthaburi landfill leachate in Thailand.


2020 ◽  
pp. 1037-1054
Author(s):  
Irvan Dahlan

Landfilling is one of the most important methods for disposal of solid waste in many countries. One of the most obvious problems associated with the landfilling practice is the generation of leachate. This chapter reviews case studies on the on-site treatment of leachates using various technologies in selected European and Asian countries. It was shown that the generation of leachate varies widely in both quantity and quality in European and Asian countries. Biological treatment and membrane technology show very high efficiencies in treating leachate generated from Odayeri landfill (in European side of Turkey) and Komurcuoda landfill (at Asian side of Turkey). Leachates from Arpley landfill (UK) and Bukit Tagar landfill (Malaysia) were successfully treated using sequence batch reactor (SBR). Fairly good treatment efficiencies were obtained using constructed wetlands (CWs) in treating Gdansk-Szadolki landfill leachate in Poland. Furthermore, the use of coagulation, filtration and membrane technologies has been proven effectively in treating Nonthaburi landfill leachate in Thailand.


Sign in / Sign up

Export Citation Format

Share Document