scholarly journals Parametrical Synthesis of Radio Devices with the Set Quantity of Identical Cascades for Inclusion Variants of Jet Two-port Networks between a Nonlinear Part and Loading

Author(s):  
A. A. Golovkov ◽  
A. V. Fomin

Introduction. The ability to analytically determine some parameters of various radio devices, which are optimal according to the criterion of providing the set values of the modules and phases of transfer functions at the required number of frequencies, significantly reduces the time for numerical optimization of the rest of the parameters according to the criterion of forming the required frequency response and frequency response in the frequency band. Until now, such problems with respect to radio devices have been solved only for one stage of the "nonlinear part – matching device" or "matching device – nonlinear part" type. As a matching device, reactive, resistive, complex, or mixed quad-poles were used.Aim. Development of algorithms for parametric synthesis of radio devices with an arbitrary number of identical cascades of the "nonlinear part – matching reactive quadrupole" type according to the criterion of ensuring the specified frequency characteristics. Non-linear parts are represented as a non-linear element and parallel or serial current or voltage feedback.Materials and methods. Four-pole theory, matrix algebra, decomposition method, method of synthesis of microwave control devices, numerical optimization methods.Results. Systems of algebraic equations are formed and solved. Models of optimal quadrupole conductors are obtained in the form of mathematical expressions for determining the relationships between the elements of their classical transmission matrix and for finding the frequency dependences of the resistances of two-pole conductors.Conclusion. It is shown that the frequency characteristics of the studied radio devices from the same stages are identical or similar to the frequency characteristics of radio devices from the same stage, but with the signal source and load resistances changed in a certain way. Such schemes are called equivalent. A comparative analysis of the theoretical results (frequency response and frequency response of radio devices) obtained by mathematical modeling in the "MathCad" system, and the experimental results obtained by circuit modeling in the "OrCAD" and "MicroCap" systems, shows their satisfactory agreement.

2021 ◽  
Vol 24 (3) ◽  
pp. 46-55
Author(s):  
Aleksandr A. Golovkov ◽  
Aleksey V. Fomin

The algorithm of parametrical synthesis of various radio devices with any quantity of cascades of type the jet two-port network a nonlinear part by criterion of maintenance of the set frequency characteristics is developed. Nonlinear parts are presented in the form of a nonlinear element and parallel either consecutive on a current or pressure of a feedback. According to this criterion systems of the algebraic equations are generated and solved. Models of optimum two-port networks in the form of mathematical expressions for definition of interrelations between elements of their classical matrix of transfer and for search of dependences of resistance of two-poles from frequency are as a result received. It is shown, that frequency characteristics of investigated radio devices from identical cascades are identical or similar to frequency characteristics of radio devices from one cascade, but with resistance of a source of a signal and the loading, changed definitely. Such schemes are named by equivalent. The comparative analysis of the theoretical results received by mathematical modelling in system MathCad, and the experimental results received by circuit simulation in systems OrCad and MicroCap, shows their satisfactory coincidence.


2013 ◽  
Vol 332 ◽  
pp. 56-61 ◽  
Author(s):  
Meysam Effati ◽  
Afshin Banazadeh

System Identification is a key technology for the development and integration of modern engineering systems including unconventional flying vehicles. These systems are highly parametric with complex dynamics and nonlinearities. Ducted fans are special class of these vehicles that can take off vertically, hover and cruise at very low speed. In this paper, an exact equivalent linear system is found from the non-linear dynamic model of a ducted fan by use of frequency response identification. Here, power spectral density analysis is performed, using CIFER software, to evaluate the input-output responses in hover and to derive the transfer functions based on the coherence criterion. Then, PID controllers are designed by utilizing the identified transfer functions and the performance characteristics of the controllers are evaluated in fully non-linear simulation of the system.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 225
Author(s):  
José García ◽  
Gino Astorga ◽  
Víctor Yepes

The optimization methods and, in particular, metaheuristics must be constantly improved to reduce execution times, improve the results, and thus be able to address broader instances. In particular, addressing combinatorial optimization problems is critical in the areas of operational research and engineering. In this work, a perturbation operator is proposed which uses the k-nearest neighbors technique, and this is studied with the aim of improving the diversification and intensification properties of metaheuristic algorithms in their binary version. Random operators are designed to study the contribution of the perturbation operator. To verify the proposal, large instances of the well-known set covering problem are studied. Box plots, convergence charts, and the Wilcoxon statistical test are used to determine the operator contribution. Furthermore, a comparison is made using metaheuristic techniques that use general binarization mechanisms such as transfer functions or db-scan as binarization methods. The results obtained indicate that the KNN perturbation operator improves significantly the results.


Author(s):  
Vincent Kather ◽  
Finn Lückoff ◽  
Christian O. Paschereit ◽  
Kilian Oberleithner

The generation and turbulent transport of temporal equivalence ratio fluctuations in a swirl combustor are experimentally investigated and compared to a one-dimensional transport model. These fluctuations are generated by acoustic perturbations at the fuel injector and play a crucial role in the feedback loop leading to thermoacoustic instabilities. The focus of this investigation lies on the interplay between fuel fluctuations and coherent vortical structures that are both affected by the acoustic forcing. To this end, optical diagnostics are applied inside the mixing duct and in the combustion chamber, housing a turbulent swirl flame. The flame was acoustically perturbed to obtain phase-averaged spatially resolved flow and equivalence ratio fluctuations, which allow the determination of flux-based local and global mixing transfer functions. Measurements show that the mode-conversion model that predicts the generation of equivalence ratio fluctuations at the injector holds for linear acoustic forcing amplitudes, but it fails for non-linear amplitudes. The global (radially integrated) transport of fuel fluctuations from the injector to the flame is reasonably well approximated by a one-dimensional transport model with an effective diffusivity that accounts for turbulent diffusion and dispersion. This approach however, fails to recover critical details of the mixing transfer function, which is caused by non-local interaction of flow and fuel fluctuations. This effect becomes even more pronounced for non-linear forcing amplitudes where strong coherent fluctuations induce a non-trivial frequency dependence of the mixing process. The mechanisms resolved in this study suggest that non-local interference of fuel fluctuations and coherent flow fluctuations is significant for the transport of global equivalence ratio fluctuations at linear acoustic amplitudes and crucial for non-linear amplitudes. To improve future predictions and facilitate a satisfactory modelling, a non-local, two-dimensional approach is necessary.


2020 ◽  
Vol 3 (5) ◽  
pp. 475-485
Author(s):  
Lining Su ◽  
Xiaohui Qin ◽  
Shang Zhang ◽  
Yantao Zhang ◽  
Yilang Jiang ◽  
...  

Author(s):  
Kazufumi Ito ◽  
Karl Kunisch

Abstract In this paper we discuss applications of the numerical optimization methods for nonsmooth optimization, developed in [IK1] for the variational formulation of image restoration problems involving bounded variation type energy criterion. The Uzawa’s algorithm, first order augmented Lagrangian methods and Newton-like update using the active set strategy are described.


2007 ◽  
Vol 4 (1) ◽  
pp. 287-326 ◽  
Author(s):  
R. J. Abrahart ◽  
L. M. See

Abstract. The potential of an artificial neural network to perform simple non-linear hydrological transformations is examined. Four neural network models were developed to emulate different facets of a recognised non-linear hydrological transformation equation that possessed a small number of variables and contained no temporal component. The modeling process was based on a set of uniform random distributions. The cloning operation facilitated a direct comparison with the exact equation-based relationship. It also provided broader information about the power of a neural network to emulate existing equations and model non-linear relationships. Several comparisons with least squares multiple linear regression were performed. The first experiment involved a direct emulation of the Xinanjiang Rainfall-Runoff Model. The next two experiments were designed to assess the competencies of two neural solutions that were developed on a reduced number of inputs. This involved the omission and conflation of previous inputs. The final experiment used derived variables to model intrinsic but otherwise concealed internal relationships that are of hydrological interest. Two recent studies have suggested that neural solutions offer no worthwhile improvements in comparison to traditional weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. Yet such fundamental properties are intrinsic aspects of catchment processes that cannot be excluded or ignored. The results from the four experiments that are reported in this paper are used to challenge the interpretations from these two earlier studies and thus further the debate with regards to the appropriateness of neural networks for hydrological modelling.


Author(s):  
S Cafferty ◽  
G. R. Tomlinson

Automotive dampers are an important element of a vehicle's suspension system for controlling road handling and passenger ride comfort. Many automotive dampers have non-linear asymmetric characteristics to accommodate the incompatible requirements between ride comfort and road handling, thus the ride comfort engineer requires techniques that can characterize this non-linear behaviour and provide models of the dampers for use in ride performance simulations of the full suspension system. The work presented in this paper is concerned with developing a frequency domain technique using higher order frequency response functions (HFRFs) to characterize a Monroe automotive damper. The principal diagonals and multidimensional surfaces of the HFRFs up to third order are obtained. Non-linear damping coefficients for the damper are derived from the HFRFs and the energy transfer properties are investigated. The results show that the majority of the HFRFs contain no peaks or resonances, indicating that the damper has no preferred frequencies for energy transfer. The accuracy of the damping coefficients determined from the HFRFs is poor. This is due to the inability of the technique to measure the pure HFRFs and separate the effects of non-linearities in the input actuator from those in the damper. It is concluded that these constraints currently impose some limit on the use of the methodology.


2021 ◽  
Vol 263 (4) ◽  
pp. 2646-2653
Author(s):  
Ananthapadmanabhan Ramesh ◽  
Sundar Sriram

Drum brakes are significant contributors to noise and vibration in automobiles causing discomfort to the passengers. The vibration and hence the resulting noise increase due to various inherent defects in the drum brake, such as asymmetry. This work aims to quantify the variation in the vibro-acoustic noise due to several common defects in the drum brake using an integrated non-linear vibration analytical model and a numerical acoustic model. The sources of vibro-acoustic noise sources such as contact and reaction forces are predicted using a four-degree-of-freedom non-linear contact mechanics based analytical model. A finite element based acoustic model of the drum brake is utilized to predict the force to the sound pressure transfer function in the drum brake. Product of the transfer functions and the forces gives the corresponding sound pressure level from which the overall sound pressure levels are estimated. The variation in the overall sound pressure levels due to different drum brake defects is evaluated by introducing defects to the analytical model. The results show that the overall sound pressure level is a strong function of the defects. It is envisioned that the current work will help in the development of effective health monitoring systems.


Author(s):  
R. Ellsworth ◽  
A. Parkinson ◽  
F. Cain

Abstract In many engineering design problems, the designer converges upon a good design by iteratively evaluating a mathematical model of the design problem. The trial-and-error method used by the designer to converge upon a solution may be complex and difficult to capture in an expert system. It is suggested that in many cases, the design rule base could be made significantly smaller and more maintainable by using numerical optimization methods to identify the best design. The expert system is then used to define the optimization problem and interpret the solution, as well as to apply the true heuristics to the problem. An example of such an expert system is presented for the design of a valve anti-cavitation device. Because of the capabilities provided by the optimization software, the expert system has been able to outperform the expert in the test cases evaluated so far.


Sign in / Sign up

Export Citation Format

Share Document