scholarly journals Analysis of the Placental Tissue Transcriptome of Normal and Preeclampsia Complicated Pregnancies

Acta Naturae ◽  
2014 ◽  
Vol 6 (2) ◽  
pp. 71-83 ◽  
Author(s):  
E. A. Trifonova ◽  
T. V. Gabidulina ◽  
N. I. Ershov ◽  
V. N. Serebrova ◽  
A. Yu. Vorozhishcheva ◽  
...  

Preeclampsia is one of the most severe gestational complications which is one of the leading causes of maternal and perinatal morbidity and mortality. A growth in the incidence of severe and combined forms of the pathology has been observed in recent years. According to modern concepts, inadequate cytotrophoblast invasion into the spiral arteries of the uterus and development of the ischemia-reperfusion syndrome in the placental tissue play the leading role in the development of preeclampsia, which is characterized by multipleorgan failure. In this regard, our work was aimed at studying the patterns of placental tissue transcriptome that are specific to females with PE and with physiological pregnancy, as well as identifying the potential promising biomarkers and molecular mechanisms of this pathology. We have identified 63 genes whose expression proved to differ significantly in the placental tissue of females with PE and with physiological pregnancy. A cluster of differentially expressed genes (DEG) whose expression level is increased in patients with preeclampsia includes not only the known candidate genes that have been identified in many other genome-wide studies (e.g., LEP, BHLHB2, SIGLEC6, RDH13, BCL6), but also new genes (ANKRD37, SYDE1, CYBA, ITGB2, etc.), which can be considered as new biological markers of preeclampsia and are of further interest. The results of a functional annotation of DEG show that the development of preeclampsia may be related to a stress response, immune processes, the regulation of cell-cell interactions, intracellular signaling cascades, etc. In addition, the features of the differential gene expression depending on preeclampsia severity were revealed. We have found evidence of the important role of the molecular mechanisms responsible for the failure of immunological tolerance and initiation of the pro-inflammatory cascade in the development of severe preeclampsia. The results obtained elaborate the concept of the pathophysiology of preeclampsia and contain the information necessary to work out measures for targeted therapy of this disease.

Author(s):  
Е.А. Трифонова ◽  
А.В. Марков ◽  
И.А. Степанов ◽  
Е.В. Ижойкина ◽  
В.А. Степанов

Многочисленными исследованиями показано, что ключевые патогенетические механизмы больших акушерских синдромов (БАС) связаны с нарушением процессов плацентации. В связи с чем, целью нашей работы являлся поиск новых генетических маркеров этих гестационных осложнений на основе интегративного анализа данных, полученных при полногеномном экспрессионном профилировании плацентарной ткани. Нами выявлено 64 гена, транскрипционная активность которых статистически значимо изменяется как минимум при двух заболеваниях группы БАС. Показана значимая роль нарушения межклеточных взаимодействий и регуляции модификации белков в плацентарной ткани при развитии изученных патологических состояний беременности, идентифицированы мастер-регуляторы, рассматриваемые в качестве потенциальных терапевтических мишеней. It is shown that the key pathogenetic mechanisms of grate obstetric syndromes (GOS) are associated with impaired placentation. The aim of the work was to search for new genetic markers of GOS on the basis of integrative analysis of genome-wide expression profiling data. We found that the transcriptional activity of 64 genes changes in at least two GOS diseases. The significant role of disturbance of intercellular interactions and regulation of protein modification in placental tissue during the development of the pregnancy complications is shown. Master regulators that are potential therapeutic targets have been identified.


2020 ◽  
Vol 31 (11) ◽  
pp. 2543-2558 ◽  
Author(s):  
Sierra S. Marable ◽  
Eunah Chung ◽  
Joo-Seop Park

BackgroundHepatocyte NF 4α (Hnf4a) is a major regulator of renal proximal tubule (PT) development. In humans, a mutation in HNF4A impairs PT functions and is associated with Fanconi renotubular syndrome (FRTS). In mice, mosaic deletion of Hnf4a in the developing kidney reduces the population of PT cells, leading to FRTS-like symptoms. The molecular mechanisms underlying the role of Hnf4a in PT development remain unclear.MethodsThe gene deletion tool Osr2Cre removed Hnf4a in developing nephrons in mice, generating a novel model for FRTS. Immunofluorescence analysis characterized the mutant phenotype, and lineage analysis tested whether Cadherin-6 (Cdh6)–expressing cells are PT progenitors. Genome-wide mapping of Hnf4a binding sites and differential gene analysis of Hnf4a mutant kidneys identified direct target genes of Hnf4a.ResultsDeletion of Hnf4a with Osr2Cre led to the complete loss of mature PT cells, lethal to the Hnf4a mutant mice. Cdh6high, lotus tetragonolobus lectin-low (LTLlow) cells serve as PT progenitors and demonstrate higher proliferation than Cdh6low, LTLhigh differentiated PT cells. Additionally, Hnf4a is required for PT progenitors to differentiate into mature PT cells. Genomic analyses revealed that Hnf4a directly regulates the expression of genes involved in transmembrane transport and metabolism.ConclusionsHnf4a promotes the differentiation of PT progenitors into mature PT cells by regulating the expression of genes associated with reabsorption, the major function of PT cells.


2020 ◽  
Vol 17 (4) ◽  
pp. 394-401
Author(s):  
Yuanhua Wu ◽  
Yuan Huang ◽  
Jing Cai ◽  
Donglan Zhang ◽  
Shixi Liu ◽  
...  

Background: Ischemia/reperfusion (I/R) injury involves complex biological processes and molecular mechanisms such as autophagy. Oxidative stress plays a critical role in the pathogenesis of I/R injury. LncRNAs are the regulatory factor of cerebral I/R injury. Methods: This study constructs cerebral I/R model to investigate role of autophagy and oxidative stress in cerebral I/R injury and the underline regulatory mechanism of SIRT1/ FOXO3a pathway. In this study, lncRNA SNHG12 and FOXO3a expression was up-regulated and SIRT1 expression was down-regulated in HT22 cells of I/R model. Results: Overexpression of lncRNA SNHG12 significantly increased the cell viability and inhibited cerebral ischemicreperfusion injury induced by I/Rthrough inhibition of autophagy. In addition, the transfected p-SIRT1 significantly suppressed the release of LDH and SOD compared with cells co-transfected with SIRT1 and FOXO3a group and cells induced by I/R and transfected with p-SNHG12 group and overexpression of cells co-transfected with SIRT1 and FOXO3 further decreased the I/R induced release of ROS and MDA. Conclusion: In conclusion, lncRNA SNHG12 increased cell activity and inhibited oxidative stress through inhibition of SIRT1/FOXO3a signaling-mediated autophagy in HT22 cells of I/R model. This study might provide new potential therapeutic targets for further investigating the mechanisms in cerebral I/R injury and provide.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 300
Author(s):  
Camilla Ceccatelli Berti ◽  
Giulia di Punzio ◽  
Cristina Dallabona ◽  
Enrico Baruffini ◽  
Paola Goffrini ◽  
...  

The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.


Nature Plants ◽  
2016 ◽  
Vol 2 (11) ◽  
Author(s):  
Xiangchao Gan ◽  
Angela Hay ◽  
Michiel Kwantes ◽  
Georg Haberer ◽  
Asis Hallab ◽  
...  

Abstract Finding causal relationships between genotypic and phenotypic variation is a key focus of evolutionary biology, human genetics and plant breeding. To identify genome-wide patterns underlying trait diversity, we assembled a high-quality reference genome of Cardamine hirsuta, a close relative of the model plant Arabidopsis thaliana. We combined comparative genome and transcriptome analyses with the experimental tools available in C. hirsuta to investigate gene function and phenotypic diversification. Our findings highlight the prevalent role of transcription factors and tandem gene duplications in morphological evolution. We identified a specific role for the transcriptional regulators PLETHORA5/7 in shaping leaf diversity and link tandem gene duplication with differential gene expression in the explosive seed pod of C. hirsuta. Our work highlights the value of comparative approaches in genetically tractable species to understand the genetic basis for evolutionary change.


2006 ◽  
Vol 84 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Aaron Y. Lai ◽  
Kathryn G. Todd

The precise role of microglia in stroke and cerebral ischemia has been the subject of debate for a number of years. Microglia are capable of synthesizing numerous soluble and membrane-bound biomolecules, some known to be neuroprotective, some neurotoxic, whereas others have less definitive bioactivities. The molecular mechanisms through which microglia activate these molecules have thus become an important area of ischemia research. Here we provide a survey review that summarizes the key actions of microglial factors in cerebral ischemia including complement proteins, chemokines, pro-inflammatory cytokines, neurotrophic factors, hormones, and proteinases, as well several important messenger molecules that play a part in how these factors respond to extracellular signals during ischemic injuries. We also provide some new perspectives on how microglial intracellular signaling may contribute to the seemingly contradictory roles of several microglial effector molecules.


2017 ◽  
Author(s):  
Yong Li ◽  
Yi Jin Liew ◽  
Guoxin Cui ◽  
Maha J Cziesielski ◽  
Noura Zahran ◽  
...  

The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research is focusing on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, which have been implicated in transcriptional regulation and acclimation to environmental change, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model systemAiptasia. We find methylated genes are marked by histone H3K36me3 and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes such as immunity, apoptosis, phagocytosis recognition and phagosome formation, and unveil intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis during symbiosis.


2020 ◽  
Author(s):  
Felix Grünberger ◽  
Robert Reichelt ◽  
Ingrid Waege ◽  
Verena Ned ◽  
Korbinian Bronner ◽  
...  

AbstractAlthough copper is in many cases an essential micronutrient for cellular life, higher concentrations are toxic. Therefore, all living cells have developed strategies to maintain copper homeostasis. In this manuscript, we have analysed the transcriptome-wide response of Pyrococcus furiosus to increased copper concentrations and described the essential role of the putative copper-sensing metalloregulator CopR in the detoxification process.To this end, we employed biochemical and biophysical methods to characterise the role of CopR. Additionally, a copR knockout strain revealed an amplified sensitivity in comparison to the parental strain towards increased copper levels, which designates an essential role of CopR for copper homeostasis. To learn more about the CopR-regulated gene network, we performed differential gene expression and ChIP-seq analysis under normal and 20 μM copper-shock conditions. By integrating the transcriptome and genome-wide binding data, we found that CopR binds to the upstream regions of many copper-induced genes. Negative-stain transmission electron microscopy and 2D class averaging revealed an octameric assembly formed from a tetramer of dimers for CopR, similar to published crystal structures from the Lrp family. In conclusion, we propose a model for CopR-regulated transcription and highlight the complex regulatory network that enables Pyrococcus to respond to increased copper concentrations.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Lanfang Li ◽  
Heng Zeng ◽  
Jian-xiong Chen

Background: Apelin is an endogenous ligand for the angiotensin-like 1 receptor (APJ) and is emerging as a key player in the regulation of angiogenesis as well as ischemia/reperfusion injury. So far, little is known about the functional role of apelin in myocardial ischemia. We investigated the potential intracellular molecular mechanisms and protective role of apelin during myocardial ischemic injury. Methods and Results: Myocardial ischemia was achieved by ligation of the left anterior descending coronary artery (LAD) for 24 hours and 14 days. Myocardial apoptosis was detected by TUNEL staining. Akt, endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), SDF-1 and CXCR4 expression were measured by western blot. The CD133+/cKit+/Sca1+, CD133/SDF-1+ and cKit/CXCR4+ cells were determined by immunostaining. Myocardial capillary and arteriole densities were analyzed in the border zone of infarcted myocardium at 14 d of ischemia. Treatment of C57BL/6J mice with apelin-13 (1 mg/Kg.d) by i.p. injection for 3 days before surgery results in significant decreases in TUNEL positive cells and myocardial infarct size at 24 hours of ischemia. Treatment with apelin increases the phosphorylation of AKT and eNOS and upregulates VEGF expression in the ischemic heart. Furthermore, treatment with apelin leads to the expression of SDF-1 and CXCR4 and increases in the number of CD133+/cKit+/Sca1+, CD133/SDF-1+ and cKit/CXCR4+ cells in ischemic hearts. Treatment with apelin also significantly increases myocardial capillary densities and arteriole formation together with a significant decrease in the ratio of heart weight to body weight at 14 days of ischemia. This is accompanied by a significant improvement of cardiac function after 14 days of ischemia. Conclusions: Our data demonstrate that apelin contributes to the protection of myocardial infarction and angiogenesis by the mechanisms involving in upregulation of SDF-1/CXCR4 and AKT/eNOS/VEGF pathways.


2001 ◽  
Vol 11 (s1) ◽  
pp. S128-S136 ◽  
Author(s):  
Susan A. Bloomfield

To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell’s actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.


Sign in / Sign up

Export Citation Format

Share Document