scholarly journals Image Encryption Using Key Matrix Generation from Biometric Mixed Fingerprint Image for Two Level Security

Author(s):  
Megha D. Randeri ◽  
Dr. Sheshang D. Degadwala ◽  
Mrs. Arpana Mahajan

In recent Era, Security has been most important issue to be considered with different forward looking and preventing measures. Several cryptographic algorithms are developed for encryption and decryption using a secret key. The issue with this strategy is that user ought to recall the key or store the key in a database, which make the framework under danger. Once the put away key is bargained, at that point an attacker can get to the private information effectively. To maintain uniqueness of key, a biometric feature such as fingerprint can be used, whereas randomness can be induced using different combinations of fingerprints. In this paper, we propose a technique to generate the key matrix by extracting minutiae points from the combined minutiae template of fingerprints of the sender and receiver. This system contains four phases. One is Enrolment Phase, second is Authentication Phase, third is Key Generation phase and last is Cryptographic phase. For encryption of the original image using generated key matrix, we use Hill cipher.

2021 ◽  
Author(s):  
paavni gaur

Abstract An Image Encryption and Decryption Using AES (Advance Encryption Standard) Algorithm is proposed in the project. Due to increasing use of image in various field, it is very important to protect the confidential image data from unauthorized access. The design uses the iterative approach with block size of 128 bit and key size of 128, 192 or 256 bit. The numbers of round for key size of 256 bits is 14, for 128 bits is 10 and for 192 bits is 12. As secret key increases the security as well as complexity of the cryptography algorithms. In this paper , an algorithm in which the image is an input to AES Encryption to get the encrypted image and then input it to AES Decryption to get the original image is proposed and explained which will further be implemented by me.The paper shows the study in which a system could be used for effective image data encryption and key generation in diversified application areas, where sensitive and confidential data needs to be transmitted along with the image.


Author(s):  
Chao Chen ◽  
Hongying Zhang ◽  
Bin Wu

In view of the problem of cracking easily and partial distortion of images after encryption or decryption, a novel image encryption and decryption algorithm based on Arnod Transform and fractional chaotic is proposed. To begin with, the Arnold transform is used to encrypt. So that the spatial confidence of the original image has been comprehensively disturbed. Secondly, the XOR involving the fractional order chaotic sequence is used to encrypt. The key sequence is dynamically generated to ensure the randomness and difference of key generation. When decryption is required, the first decryption is performed using the key and XOR. Then the second decryption is carried out by using the inverse Arnold transform, and finally the decrypted image is obtained. Experimental results show that the improved algorithm has achieved better performance in encryption and decryption.


A novel cryptographic algorithm, namely Significant Secure Biometric Key (SSBK) algorithm is proposed.The novel algorithm is compared with the existing cryptographic algorithms like Advanced Encryption Standard (AES), key exchange algorithm like Diffie-Helman and also with Symmetric Random Biometric Key (SRBK) algorithm, and finally we prove the proposed algorithm is superior than existing algorithm based on few parameters. A sample plain text is taken and converted to cipher text and the key from the biometric feature is used for encryption and decryption. In the key generation process, the bi-modal biometrics, namely Ear and Lip features are taken. The concatenated key values obtained from ear and lip can be of minimum 8 bits to the maximum of 1024 bits based on the type of algorithm used.


Author(s):  
Paavni Gaur

Abstract: An Image Encryption and Decryption Using AES (Advance Encryption Standard) Algorithm is proposed in the project. Due to increasing use of image in various field, it is very important to protect the confidential image data from unauthorized access. The design uses the iterative approach with block size of 128 bit and key size of 128, 192 or 256 bit. The numbers of round for key size of 256 bits is 14 , for 128 bits is 10 and for 192 bits is 12. As secret key increases the security as well as complexity of the cryptography algorithms. In this paper , an algorithm in which the image is an input to AES Encryption to get the encrypted image and then input it to AES Decryption to get the original image is proposed and explained which will further be implemented by me. The paper shows the study in which a system could be used for effective image data encryption and key generation in diversified application areas, where sensitive and confidential data needs to be transmitted along with the image.


Author(s):  
V Goutham Bharadwaja ◽  
Yashas M S ◽  
Yathendra Yadav T V ◽  
Gelvesh G

Security is a crucial side to preserve the confidentiality of information such as pictures and text. The probability of an assailant attempting to access the image in the course of transferring process is high as assailant may get hold of important data. Therefore, encryption methods are used for securing the data. A novel image encryption algorithm that is a combination of the AES algorithm and the chaos sequence is proposed in this paper. The project will use AES for encryption and decryption of the image transfer because AES is capable of solving problem that cannot be resolved by different algorithms. The original image is transformed into cipher-image using a share secret key and this process is called encryption while the reverse of encryption process is known as decryption. This method’s sensitivity to the initial values and input image, even the tiniest changes within these values will result in significant changes in the encrypted image. We show that this approach can shield the image against different attacks exploitation using histogram analysis.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 180 ◽  
Author(s):  
Dalia H. ElKamchouchi ◽  
Heba G. Mohamed ◽  
Karim H. Moussa

Modern multimedia communications technology requirements have raised security standards, which allows for enormous development in security standards. This article presents an innovative symmetric cryptosystem that depends on the hybrid chaotic Lorenz diffusion stage and DNA confusion stage. It involves two identical encryption and decryption algorithms, which simplifies the implementation of transmitting and receiving schemes of images securely as a bijective system. Both schemes utilize two distinctive non-consecutive chaotic diffusion stages and one DNA scrambling stage in between. The generation of the coded secret bit stream employs a hybrid chaotic system, which is employed to encrypt or decrypt the transmitted image and is utilized in the diffusion process to dissipate the redundancy in the original transmitted image statistics. The transmitted image is divided into eight scrambled matrices according to the position of the pixel in every splitting matrix. Each binary matrix is converted using a different conversion rule in the Watson–Crick rules. The DNA confusion stage is applied to increase the complexity of the correlation between the transmitted image and the utilized key. These stages allow the proposed image encryption scheme to be more robust against chosen/known plaintext attacks, differential attacks, cipher image attacks, and information entropy. The system was revealed to be more sensitive against minimal change in the generated secret key. The analysis proves that the system has superior statistical properties, bulkier key space, better plain text sensitivity, and improved key sensitivity compared with former schemes.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5162 ◽  
Author(s):  
Chiranji Lal Chowdhary ◽  
Pushpam Virenbhai Patel ◽  
Krupal Jaysukhbhai Kathrotia ◽  
Muhammad Attique ◽  
Kumaresan Perumal ◽  
...  

The majority of imaging techniques use symmetric and asymmetric cryptography algorithms to encrypt digital media. Most of the research works contributed in the literature focus primarily on the Advanced Encryption Standard (AES) algorithm for encryption and decryption. This paper propose an analysis for performing image encryption and decryption by hybridization of Elliptic Curve Cryptography (ECC) with Hill Cipher (HC), ECC with Advanced Encryption Standard (AES) and ElGamal with Double Playfair Cipher (DPC). This analysis is based on the following parameters: (i) Encryption and decryption time, (ii) entropy of encrypted image, (iii) loss in intensity of the decrypted image, (iv) Peak Signal to Noise Ratio (PSNR), (v) Number of Pixels Change Rate (NPCR), and (vi) Unified Average Changing Intensity (UACI). The hybrid process involves the speed and ease of implementation from symmetric algorithms, as well as improved security from asymmetric algorithms. ECC and ElGamal cryptosystems provide asymmetric key cryptography, while HC, AES, and DPC are symmetric key algorithms. ECC with AES are perfect for remote or private communications with smaller image sizes based on the amount of time needed for encryption and decryption. The metric measurement with test cases finds that ECC and HC have a good overall solution for image encryption.


2020 ◽  
Vol 8 (6) ◽  
pp. 2911-2918

Cryptography is the specialty of encoding and decoding messages and exists as extended as the individuals have doubted from one another and need secure correspondence. The traditional techniques for encryption naturally depend on any among public key or secret key approaches. In general, the public key encryption depends on two keys, for example, public key and private key. Since encryption and decryption keys are different, it isn't important to safely distribute a key. In this approach, the difficult of the numerical issues is assumed, not demonstrated. All the security will be easily compromised if proficient factoring algorithms are found. In secret key encryption two clients at first create secret key, which is a long string of arbitrarily selected bits and safely shares between them. At that point the clients can utilize the secret key along with the algorithms to encryption and decryption information. The procedures are complicated and also planned such a way that every bit of output is based on every bit of input. There are two fundamental issues with secret key encryption; first one is that by breaking down the openly known encoding algorithms, it gets simpler to decrypt the message. The subsequent one is that it experiences key-conveyance issue. As a result of the ongoing improvements in quantum processing and quantum data hypothesis, the quantum computers presents genuine difficulties to generally utilized current cryptographic strategy. The improvement of quantum cryptography beat the deficiencies of old style cryptography and achieves these huge accomplishments by using the properties of infinitesimal articles, for example, photon with its polarization and entangled state. In this paper, Polarization by refraction based quantum key distribution (PR-QKD) is proposed for quantum key generation and distribution. The proposed work considers three basis of polarization such as rectilinear (horizontal and vertical), circular (left-circular and right-circular), ellipse (left-ellipse and rightellipse) and refraction factor. This quantum key can be used for secure communication between two users who are spatially separated and also offer intrusion detection ability to detect attackers. The theoretical approach and conceptual results are discussed in this paper.


2015 ◽  
Vol 3 (2) ◽  
pp. 244
Author(s):  
Balajee Maram ◽  
Y Ramesh Kumar ◽  
K Lakshmana Rao

<p>In this research paper, a novel and strong symmetric key cryptography algorithm is proposed. NARSKCA is based on several symmetric cryptographic algorithms. NARSKCA is very simple that uses character converting algorithm, Fibonacci Number Series, Lucas Number series and bitwise XOR. In NARSKCA, 32 files are shared-secret files plays a vital role in this Proposed Algorithm. The Sub-keys are generated from those 32 shared-secret files which are useful in different rounds of Encryption and Decryption Process. The most important feature is the calculation of the final key from the Sub-Keys for each Text-Block. Key Generation, encryption/decryption schemes of NARSKCA are fast and difficult to predict by Cryptanalysts.</p>


2021 ◽  
pp. 1-17
Author(s):  
P. Alli ◽  
J. Dinesh Peter

The day-to-day progress in communication plays a vital role in transmitting millions and trillions of data through the unsecured network channels. It creates a way where the user’s data becomes the victim of various security threats. Among those users’ data, images act as primary data, and its encryption security methodologies are fascinating. The conventional encryption techniques don’t work well against the various other hidden security threats but require substantial computational time and cost with poor permutation performance. Hence to deal with this, an auto-encoder induced DNA (Deoxyribonucleic acid) sequence via chaotic image encryption framework is designed in our proposed work. It integrates the properties of DNA encoding and the chaotic maps to handle the data losses effectively and resist several attacks such as statistical attacks, chosen-plaintext attacks, etc. Moreover, an auto-encoder is used to control the data noises, thereby ensuring a better encryption performance. Here, the auto-encoder is activated to generate a permuted image with less time complexity and noise. A secret key is then initialized with the aid of SHA-256. Finally, image encryption and decryption are achieved, followed by the successful transmission of data over a digital network. The performance of the proposed work is analyzed with varied metrics to strengthen its efficiency over the prior techniques.


Sign in / Sign up

Export Citation Format

Share Document