scholarly journals The Effect of Polycarboxylate as a Superplasticizer on the Engineering Properties of Foam Concrete

Author(s):  
Hassan H ◽  
Esan M. T ◽  
Lamidi I. O ◽  
Akinyele I. O

The effect of polycarboxylate ether superplasticizer on engineering characteristics was explored which includes compressive, flexural strength and water absorption. The findings of the test revealed that 1.5% addition of polycarboxylate ether superplasticizer decrease the compressive strength but appreciate the flexural strength. However, the percentage of water absorption ability was found reducing due to the increase in the Polycarboxylate Ether Superplasticizer dosage. Conclusively, the addition of Polycarboxylate Ether Superplasticizer of 1.5% in foam concrete has effect on the compressive strength.

2013 ◽  
Vol 842 ◽  
pp. 156-159 ◽  
Author(s):  
Yan Da Cai ◽  
Jing Song Wang ◽  
Yun Feng Luo ◽  
Wen Wu Long ◽  
Xiao Feng Yang ◽  
...  

400kg/m3 apparent density foam concrete consists of protein foaming agent, ordinary Portland cement and two types of polypropylene fibers is made in this study. The effects of two types of fibers (polypropylene linear fiber and polypropylene mesh fiber) on the compressive strength, flexural strength and water absorption of the foam concrete were investigated. The results showed the difference of the water absorption of the foam concrete with addition of the two types of fibers is not significant, but the difference of the compressive strength and flexural strength is clear. Moderate addition of fibers could improve the strength of the foam concrete. As compared with control, the compressive strength and flexural strength increased by as high as 60.7% and 71.2%, respectively. From the experimental results, it is clear that polypropylene linear fiber has advantage of compressive strength and flexural strength over polypropylene mesh fiber when mixed with foam concrete.


2012 ◽  
Vol 476-478 ◽  
pp. 1585-1588
Author(s):  
Hong Pan ◽  
Guo Zhong Li

The comprehensively modified effect of cement, VAE emulsion and self-made acrylic varnish on mechanical and water-resistant properties of gypsum sample was investigated and microstructure of gypsum sample was analyzed. Experimental results exhibit that absolutely dry flexural strength, absolutely dry compressive strength, water absorption and softening coefficient of gypsum specimen with admixture of 10% ordinary Portland cement and 6% VAE emulsion and acrylic varnish coated on its surface can respectively reach to 5.11MPa , 10.49 MPa, 8.32% and 0.63, respectively.


Author(s):  
Nguyen Van Chinh

Drying shrinkage is the main cause of early age cracking of concrete and mortar. A wide range of research has been conducted to reduce the drying shrinkage, including using fibres or chemical admixtures. This paper investigated the effect of shrinkage reducing admixture on the flexural strength, compressive strength, drying shrinkage, water absorption and porosity of mortar. The mix compositions were ordinary Portland cement (OPC) : sand : liquid = 1: 1: 0.38 in which liquid consisted of water and shrinkage reducing admixture (SRA). SRA was used at the proportions of 2%, 4%, and 7% by weight of cement. The test results show that SRA reduces the flexural and compressive strengths of mortar. The reduction in flexural strength and compressive strength at 28 days is 14% and 25%, respectively at 7% SRA dosage. In addition, SRA significantly reduces the drying shrinkage and water absorption of mortar. At 7% SRA dosage, the drying shrinkage at 53 days is reduced by 60% while the water absorption rate at 24 hours is reduced by 54%. However, SRA has a minor effect on the pore size distribution, effective porosity, and cumulative intrusion volume of mortar.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 387 ◽  
Author(s):  
Alaitz Linares-Unamunzaga ◽  
Heriberto Pérez-Acebo ◽  
Marta Rojo ◽  
Hernán Gonzalo-Orden

Soil–cement is an environmentally friendly road construction technique for base and subbase materials, which allows employing soils placed in the right-of-way of the road or in the surroundings, by improving its engineering properties. With this technique, it is possible to reduce the over-exploitation of quarries, the necessity of landfills and the pollutant gas emission due to the reduction of aggregate fabrication and transport. The manufacturing of soil–cement is generally controlled by means of the Uniaxial Compressive Strength (UCS) test at seven days, according to the regulations of each country. Nonetheless, one of the properties that best defines the performance of soil–cement is the Flexural Strength (FS) at long term, usually at 90 days. The aim of this paper is to develop new equations to correlate the UCS and the FS at long term and the UCS at seven days and at 90 days. Obtained results validate the proposed models and, hence, the flexural strength can be predicted from the Uniaxial Compressive Strength at seven days, allowing, if necessary, correcting measures (recalculation or rejection) in early stages of the curing time to be taken.


2011 ◽  
Vol 399-401 ◽  
pp. 1214-1217 ◽  
Author(s):  
Xin Gang Yu ◽  
Yan Na Gao ◽  
Lin Lin ◽  
Fang Li

Lightweight concrete has been used for structural purposes for many years and it is developed very fast in resent years due to its lightweight and favourable for insulation properties. High strength foam concrete is a fairly new kind of lightweight concrete with excellent properties of outstanding workability, low density and high strength. Responsible for these properties are the macro-, meso- and micro- porosity of the foam concrete which are mainly affected by the foaming agent. The influence of foaming agent’s dilution ratio and foam dosage on the fluidity, compressive strength, flexural strength and drying shrinkage of high density foam concrete designed for structural materials is investigated in this paper.


Author(s):  
Nurazuwa Md Noor ◽  
Jun Xiang-ONG ◽  
Hamidun Mohd Noh ◽  
Noor Azlina Abdul Hamid ◽  
Salsabila Kuzaiman ◽  
...  

Author(s):  
Vu-An Tran

This research investigates the physical and mechanical properties of mortar incorporating fly ash (FA), which is by-product of Duyen Hai thermal power plant. Six mixtures of mortar are produced with FA at level of 0%, 10%, 20%, 30%, 40%, and 50% (by volume) as cement replacement and at water-to-binder (W/B) of 0.5. The flow, density, compressive strength, flexural strength, and water absorption tests are made under relevant standard in this study. The results have shown that the higher FA content increases the flow of mortar but significantly decreases the density of mixtures. The water absorption and setting time increases as the samples incorporating FA. Compressive strength of specimen with 10% FA is approximately equal to control specimen at the 91-day age. The flexural strength of specimen ranges from 7.97 MPa to 8.94 MPa at the 91-day age with the best result for samples containing 10% and 20% FA.


2019 ◽  
pp. 7-11
Author(s):  
Guadalupe Martín-Del Campo ◽  
Gabriela Hernández

A proposal was developed to make bricks based on ground shrinkage of a company that is dedicated to the manufacture of cross-linked foams, the process consisted of first establishing the dimensions according to what is currently in the market, a reference target was determined with concentrations similar to an artisanal brick, immediately replacing the white concentrations for test A were 40% of tepojal, 30% of cement, 20% of sand and 10% of shrinkage and test B of 45% of Tepojal, 35% sand, 20% depletion, to evaluate the technical feasibility in the elaboration of the specifications of NMX-C-441-ONNCCE, such as compressive strength, water absorption and dimensions, as well as The density of the elaborated bricks, which was obtained as a result of that of test B is very viable for non-structural use, that is to say dividing walls, since it supports a load of 1000 kg, they are efficient to place them at weathering since the percentage of water absorption is 4%, as well as the economic feasibility, with a cost of $ 13.1.


Author(s):  
Nguyen Huu May ◽  
Huynh Trong Phuoc ◽  
Le Thanh Phieu ◽  
Ngo Van Anh ◽  
Chau Minh Khai ◽  
...  

This study presents an experimental investigation on the recycling of waste incineration bottom ash (IBA) as a fine aggregate in the production of interlocking concrete bricks (ICB). Before being used, the concentration of heavy metal in IBA was determined to confirm it is a non-toxic material. In this study, the IBA was used to replace crushed sand (CSA) in the brick mixtures at different replacement levels of 0%, 25%, 50%, 75%, and 100% (by volume). The ICB samples were checked for dimensions, visible defects, compressive strength, bending strength, water absorption, and surface abrasion in accordance with the related Vietnamese standards. The test results demonstrated that the IBA used in this study was a non-toxic material, which can be widely used for construction activities. All of the ICB samples prepared for this study exhibited a nice shape with consistent dimensions and without any visible defects. The incorporation of IBA in the brick mixtures affected engineering properties of the ICB samples such as a reduction in the compressive strength and bending strength and an increment in water absorption and surface abrasion of the brick samples. As a result, the compressive strength, bending strength, water absorption, and surface abrasion values of ICB samples at 28 days were in the ranges of 20.6 – 34.9 MPa, 3.95 – 6.62 MPa, 3.8 – 7.2%, and 0.132 – 0.187 g/cm2, respectively. Therefore, either partial or full replacement of CSA by IBA, the ICB with grades of M200 – M300 could be produced with satisfying the TCVN 6476:1999 standard in terms of dimensions, visible defects, compressive strength, water absorption, and surface abrasion. These results demonstrated the high applicability of the local IBA in the production of the ICB for various construction application purposes. Keywords: interlocking concrete brick; waste incineration bottom ash; visible defect; compressive strength; bending strength; water absorption; surface abrasion.


Sign in / Sign up

Export Citation Format

Share Document