scholarly journals Application of Nanoparticles In Ensuring Food Safety

Author(s):  
T. Ganesh Kumar ◽  
P. Mahesh Reddy ◽  
C. V. Rajagopala Reddy

Recent innovations in nanotechnology have transformed a number of scientific and industrial areas including the food industry. Applications of nanotechnology have emerged with increasing need of nanoparticle uses in various fields of food science and food microbiology, including food processing, food packaging, functional food development, food safety, detection of foodborne pathogens, and shelf-life extension of food and/or food products. This review summarizes the potential of nanoparticles for their uses in the food industry in order to provide consumers a safe and contamination free food and to ensure the consumer acceptability of the food with enhanced functional properties.

2021 ◽  
Author(s):  
Lei Yuan ◽  
Fedrick C Mgomi ◽  
Zhenbo Xu ◽  
Ni Wang ◽  
Guoqing He ◽  
...  

Biofilms constitute a protective barrier for foodborne pathogens to survive under stressful food processing conditions. Therefore, studies into the development and control of biofilms by novel techniques are vital for the food industry. In recent years, foodomics techniques have been developed for biofilm studies, which contributed to a better understanding of biofilm behavior, physiology, composition, as well as their response to antibiofilm methods at different molecular levels including genes, RNA, proteins and metabolic metabolites. Throughout this review, the main studies where foodomics tools used to explore the mechanisms for biofilm formation, dispersal and elimination were reviewed. The data summarized from relevant studies are important to design novel and appropriate biofilm elimination methods for enhancing food safety at any point of food processing lines.


Gold Bulletin ◽  
2021 ◽  
Author(s):  
Saeed Paidari ◽  
Salam Adnan Ibrahim

AbstractIn the past few decades, there have been remarkable advances in our knowledge of gold nanoparticles (AuNPs) and synthesizing methods. AuNPs have become increasingly important in biomedical and industrial applications. As a newly implemented method, AuNPs are being used in nanopackaging industries for their therapeutic and antibacterial characteristics as well as their inert and nontoxic nature. As with other NPs, AuNPs have privileges and disadvantages when utilized in the food sector, yet a significant body of research has shown that, due to the specific nontoxic characteristics, AuNPs could be used to address other NP flaws. In this mini review, we present synthesizing methods, food industry applications, and mechanisms of action of gold nanoparticles. Regarding the investigations, gold nanoparticles can play a major role to reduce microbial load in foodstuff and therefore can be implemented in food packaging as an effective approach.


Author(s):  
Kgomotso Lebelo ◽  
Ntsoaki Malebo ◽  
Mokgaotsa Jonas Mochane ◽  
Muthoni Masinde

Historically, chemicals exceeding maximum allowable exposure levels have been disastrous to underdeveloped countries. The global food industry is primarily affected by toxic chemical substances because of natural and anthropogenic factors. Food safety is therefore threatened due to contamination by chemicals throughout the various stages of food production. Persistent Organic Pollutants (POPs) in the form of pesticides and other chemical substances such as Polychlorinated Biphenyls (PCBs) have a widely documented negative impact due to their long-lasting effect on the environment. This present review focuses on the chemical contamination pathways along the various stages of food production until the food reaches the consumer. The contamination of food can stem from various sources such as the agricultural sector and pollution from industrialized regions through the air, water, and soil. Therefore, it is imperative to control the application of chemicals during food packaging, the application of pesticides, and antibiotics in the food industry to prevent undesired residues on foodstuffs. Ultimately, the protection of consumers from food-related chemical toxicity depends on stringent efforts from regulatory authorities both in developed and underdeveloped nations.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Sanna M. Sillankorva ◽  
Hugo Oliveira ◽  
Joana Azeredo

The interest for natural antimicrobial compounds has increased due to alterations in consumer positions towards the use of chemical preservatives in foodstuff and food processing surfaces. Bacteriophages fit in the class of natural antimicrobial and their effectiveness in controlling bacterial pathogens in agro-food industry has led to the development of different phage products already approved by USFDA and USDA. The majority of these products are to be used in farm animals or animal products such as carcasses, meats and also in agricultural and horticultural products. Treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases and ultimately promote safe environments in animal and plant food production, processing, and handling. This is an overview of recent work carried out with phages as tools to promote food safety, starting with a general introduction describing the prevalence of foodborne pathogens and bacteriophages and a more detailed discussion on the use of phage therapy to prevent and treat experimentally induced infections of animals against the most common foodborne pathogens, the use of phages as biocontrol agents in foods, and also their use as biosanitizers of food contact surfaces.


Author(s):  
Aljosa Trmcic ◽  
Elizabeth Demmings ◽  
Kalmia Kniel ◽  
Martin Wiedmann ◽  
Samuel David Alcaine

The COVID-19 pandemic has greatly impacted the US food supply and consumer behavior. Food production and processing are being disrupted as illnesses, proactive quarantines, and government-mandated movement restrictions cause labor shortages. In this environment, the food industry has been required to adopt new, additional practices to minimize the risk of COVID-19 cases and outbreaks among its workforce. Successfully overcoming these challenges requires a comprehensive approach that addresses COVID-19 transmission both within and outside the facility; possible interventions include strategies to (i) vaccinate employees, (ii) assure that employees practice social distancing, (iii) assure that employees wear face coverings, (iv) screen employees for COVID-19 (v) assure that employees practice frequent handwashing and avoid touching their faces, (vi) clean frequently touched surfaces, and (vii) assure proper ventilation. Compliance with these control strategies needs to be verified and an overall “COVID-19 control culture” needs to be established to facilitate an effective program. Despite some public misperceptions about SARS-CoV-2 presence on foods or food packaging representing a public health risk, it is important to note that both the virus’ biology and epidemiological data clearly support a negligible risk of COVID-19 transmission through food and food packing. However, COVID-19 pandemic related supply chain and workforce disruptions, as well as the shift in resources to protect food industry employees from COVID-19 may increase the actual food safety risks. The goal of this paper is to review the COVID-19 mitigation practices adopted by the food industry, and the potential impact of these practices and COVID-19 related disruptions on the industry’s food safety mission. A review of these impacts is necessary to ensure that the food industry is prepared to maintain a safe and nutritious food supply in the face of future global disruptions.


Author(s):  
Shabir Ahmad Mir ◽  
Manzoor Ahmad Shah

This chapter addresses the potential application of nanotechnology in various areas of the food industry. Nanotechnology is having an impact on several aspects of the food industry, from product development to packaging processes. Nanotechnology is capable of solving the very complex set of engineering and scientific challenges in the food processing industries. This chapter focuses on exploring the role of nanotechnology in enhancing food stability at the various stages of processing. Research has highlighted the prospective role of nanotechnology use in the food sector, including nanoencapsulation, nanopackaging, nanoemulsions, nanonutraceuticals, and nanoadditives. Industries are developing nanomaterials that will make a difference not only in the taste of food but also in food safety and the health benefits that food delivers. While proposed applications of nanotechnologies are wide and varied, developments are met with some caution as progress may be stifled by lack of governance and potential risks.


2017 ◽  
pp. 1165-1181
Author(s):  
Shabir Ahmad Mir ◽  
Manzoor Ahmad Shah

This chapter addresses the potential application of nanotechnology in various areas of the food industry. Nanotechnology is having an impact on several aspects of the food industry, from product development to packaging processes. Nanotechnology is capable of solving the very complex set of engineering and scientific challenges in the food processing industries. This chapter focuses on exploring the role of nanotechnology in enhancing food stability at the various stages of processing. Research has highlighted the prospective role of nanotechnology use in the food sector, including nanoencapsulation, nanopackaging, nanoemulsions, nanonutraceuticals, and nanoadditives. Industries are developing nanomaterials that will make a difference not only in the taste of food but also in food safety and the health benefits that food delivers. While proposed applications of nanotechnologies are wide and varied, developments are met with some caution as progress may be stifled by lack of governance and potential risks.


2019 ◽  
Vol 4 (4) ◽  
pp. 206-213
Author(s):  
Rita Singh ◽  
Antaryami Singh

Food irradiation is a well-established and effective technology for food processing and preservation. The technology aids in reducing food losses and ensuring food safety by elimination of pathogens and parasites causing illness and death. Radiation treatment can be applied to agricultural produce and animal food products to get extended shelf life with improved microbiological safety and quality. Irradiating food can greatly reduce illness from foodborne pathogens thereby preventing morbidity and mortality. Various national and international food and health organisations have endorsed and supported the safety of food and foodstuffs subjected to ionising radiation based on the research and testing data of more than 50 year. A review is presented on the historical developments of food irradiation technology, radiation sources for treatment of food and, the safety and wholesomeness of foods processed by ionising radiation.


2020 ◽  
Vol 9 ◽  
Author(s):  
Fereidoon Shahidi

The goal of this contribution is to provide a summary report on the Extraordinary Scientific Roundtable on COVID-19 and Food Safety co-organized by the International Union of Food Science and Technology (IUFoST) and the Chinese Institute of Food Science and Technology (CIFST).  The meeting provided a valuable recount of this coronavirus, particularly that the virus is not transmitted by food. On this basis, so far there is no evidence that COVID-19 has any effect on food safety and security as well as on food bioactives. The challenges faced by the food industry during the pandemic period as well as potential post-pandemic time opportunities were discussed.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3271
Author(s):  
Maricarmen Iñiguez-Moreno ◽  
Juan Arturo Ragazzo-Sánchez ◽  
Montserrat Calderón-Santoyo

Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.


Sign in / Sign up

Export Citation Format

Share Document