scholarly journals The QR code intelligent positioning system of the LBS cloud platform in the Internet of things environment

2021 ◽  
Vol 3 (2) ◽  
pp. 31
Author(s):  
Xinyue Wang ◽  
Haibao Wang

Aiming at the problems of long positioning time and poor positioning accuracy in traditional positioning systems, a WeChat applet QR code area positioning system based on the LBS cloud platform is proposed and designed. The overall architecture of the system is divided into three parts: LBS cloud service, central data processing, and QR code positioning terminal for small programs. The hardware is designed from the server-side module, processor and positioning module to provide a basis for system construction. In the software design, the WeChat applet QR code area image is collected, the image edge features are enhanced and filtered, the positioning target is determined according to the processed image edge features, and the WeChat applet QR code area positioning system design is completed. The experimental results show that the positioning time of the system is equivalent to 50% of the traditional system, and the positioning accuracy is always maintained above 99.5%, which has significant advantages.

Computation ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 7 ◽  
Author(s):  
Olaoluwa Popoola ◽  
Sinan Sinanović ◽  
Wasiu Popoola ◽  
Roberto Ramirez-Iniguez

Overlap of footprints of light emitting diodes (LEDs) increases the positioning accuracy of wearable LED indoor positioning systems (IPS) but such an approach assumes that the footprint boundaries are defined. In this work, we develop a mathematical model for defining the footprint boundaries of an LED in terms of a threshold angle instead of the conventional half or full angle. To show the effect of the threshold angle, we compare how overlaps and receiver tilts affect the performance of an LED-based IPS when the optical boundary is defined at the threshold angle and at the full angle. Using experimental measurements, simulations, and theoretical analysis, the effect of the defined threshold angle is estimated. The results show that the positional time when using the newly defined threshold angle is 12 times shorter than the time when the full angle is used. When the effect of tilt is considered, the threshold angle time is 22 times shorter than the full angle positioning time. Regarding accuracy, it is shown in this work that a positioning error as low as 230 mm can be obtained. Consequently, while the IPS gives a very low positioning error, a defined threshold angle reduces delays in an overlap-based LED IPS.


2019 ◽  
Vol 9 (6) ◽  
pp. 1048 ◽  
Author(s):  
Huy Tran ◽  
Cheolkeun Ha

Recently, indoor positioning systems have attracted a great deal of research attention, as they have a variety of applications in the fields of science and industry. In this study, we propose an innovative and easily implemented solution for indoor positioning. The solution is based on an indoor visible light positioning system and dual-function machine learning (ML) algorithms. Our solution increases positioning accuracy under the negative effect of multipath reflections and decreases the computational time for ML algorithms. Initially, we perform a noise reduction process to eliminate low-intensity reflective signals and minimize noise. Then, we divide the floor of the room into two separate areas using the ML classification function. This significantly reduces the computational time and partially improves the positioning accuracy of our system. Finally, the regression function of those ML algorithms is applied to predict the location of the optical receiver. By using extensive computer simulations, we have demonstrated that the execution time required by certain dual-function algorithms to determine indoor positioning is decreased after area division and noise reduction have been applied. In the best case, the proposed solution took 78.26% less time and provided a 52.55% improvement in positioning accuracy.


2020 ◽  
Vol 14 (4) ◽  
pp. 63-70
Author(s):  
A. V. Teterev

A correctly selected positioning system for controlling the mobile robotic means movement ensures high positioning accuracy of the robotic platform in the garden, allows to automate precise operations in the garden and systematize route planning algorithms.(Research purpose) To substantiate the rational choice of a positioning system for controlling the mobile robotic device movement.(Materials and methods) The author formulated requirements for the positioning system to perform precise operations in the garden: mechanized collection of fruits and berries, diff erentiated application of fertilizers and chemical plant protection products. The main ones were: the positioning error was no more than 5 centimetres, the stability of information transfer to the server for building traffi c maps, the movement of a robotic device along a given trajectory, equipping beacons with a mobile power source with a capacity of at least 800 milliampere-hour, information exchange between the beacon and the built-in robotic means with a microprocessor controller according to the RS-485 standard, the signal coverage area was at least 100 square meter.(Results and discussion) The six most relevant positioning systems of the following manufacturers were described: RealTrac, Rusoft CKT, Neomatic, ISBC, Avtosensor, Marvelmind. The author compared their technical and operational parameters: operating frequencies, range, data transfer interface, location accuracy and cost of ready-made kits. He showed that Marvelmind provided uninterrupted operation at frequencies of 433 and 915 megahertz with a positioning error of no more than 2 centimetres. The tests were carried out on a small robotic vehicle with the following characteristics: maximum transport speed – 30 kilometre per hour, operating weight – 500 kilograms, length 2 metres, width – 1.2 metres, height – 1.6 metres.(Conclusions) The author substantiated the choice of the most suitable and aff ordable Marvelmind positioning system and experimentally confi rmed the positioning accuracy declared by the manufacturer. When driving in a loop-free and looped turn, the positioning accuracy did not exceed 1.5 centimetres, which met the agrotechnical requirements for mechanized collection of fruits and berries, for diff erentiated application of fertilizers and chemical plant protection products


2021 ◽  
Vol 13 (21) ◽  
pp. 4424
Author(s):  
Mariusz Specht

In navigation, the Twice the Distance Root Mean Square (2DRMS) is commonly used as a position accuracy measure. Its determination, based on statistical methods, assumes that the position errors are normally distributed and are often not reflected in actual measurements. As a result of the widespread adoption of this measure, the positioning accuracy of navigation systems is overestimated by 10–15%. In this paper, a new method is presented for determining the navigation system positioning accuracy based on a reliability model where the system’s operation and failure statistics are referred to as life and failure times. Based on real measurements, the method proposed in this article will be compared with the classical method (based on the 2DRMS measure). Real (empirical) measurements made by the principal modern navigation positioning systems were used in the analyses: Global Positioning System (GPS) (168’286 fixes), Differential Global Positioning System (DGPS) (900’000 fixes) and European Geostationary Navigation Overlay Service (EGNOS) (900’000 fixes). Research performed on real data, many of which can be considered representative, have shown that the reliability method provides a better (compared to the 2DRMS measure) estimate of navigation system positioning accuracy. Thanks to its application, it is possible to determine the position error distribution of the navigation system more precisely when compared to the classical method, as well as to indicate those applications that can be used by this system, ensuring the safety of the navigation process.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4373 ◽  
Author(s):  
Jinwu Tong ◽  
Xiaosu Xu ◽  
Lanhua Hou ◽  
Yao Li ◽  
Jian Wang ◽  
...  

The USBL (Ultra-Short Base Line) positioning system is widely used in underwater acoustic positioning systems due to its small size and ease of use. The traditional USBL positioning system is based on ‘slant range and azimuth’. The positioning error is an increasing function with the increase in distance and the positioning accuracy depends on the ranging accuracy of the underwater target. This method is not suitable for long-distance underwater positioning operations. This paper proposes a USBL positioning calculation model based on depth information for ‘rotating array and reusing elements’. This method does not need to measure the distance between the USBL acoustic array and target, so it can completely eliminate the influence of long-distance ranging errors in USBL positioning. The theoretical analysis and simulation experiments show that the new USBL positioning model based on ‘rotating array and reusing elements’ can completely eliminate the influence of the wavelength error and spacing error of underwater acoustic signals on the positioning accuracy of USBL. The positioning accuracy can be improved by approximately 90%, and the horizontal positioning error within a positioning distance of 1000 m is less than 1.2 m. The positioning method has high precision performance in the long distance, and provides a new idea for the engineering design of a USBL underwater positioning system.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Hao Zhanjun ◽  
Li Beibei ◽  
Dang Xiaochao

In a precise positioning system, weak signal errors caused by the influence of a human body on signal transmission in complex environments are a main cause of the reduced reliability of communication and positioning accuracy. Therefore, eliminating the influence of interference from human crawling waves on signal transmissions in complex environments is an important task in improving positioning systems. To conclude, an experimental environment is designed in this paper and a method using the Ultra-Wideband (UWB) Local Positioning System II (UWB LPS), called Bayesian Compressed Sensing-Crawling Waves (BCS-CW), is proposed to eliminate the impact of crawling waves using Bayesian compressive sensing. First, analyse the transmission law for crawling waves on the human body. Second, Bayesian compressive sensing is used to recover the UWB crawling wave signal. Then, the algorithm is combined with the maximum likelihood estimation and iterative approximation algorithms to determine the label position. Finally, through experimental verification, the positioning accuracy of this method is shown to be greatly improved compared to that of other algorithms.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3860 ◽  
Author(s):  
Specht

According to the IHO (International Hydrographic Organization) S-44 standard, hydrographic surveys can be carried out in four categories, the so-called orders—special, 1a, 1b, and 2—for which minimum accuracy requirements for the applied positioning system have been set out. These amount to, respectively: 2 m, 5 m, 5 m, and 20 m at a confidence level of 0.95. It is widely assumed that GNSS (Global Navigation Satellite System) network solutions with an accuracy of 2–5 cm (p = 0.95) and maritime DGPS (Differential Global Positioning System) systems with an error of 1–2 m (p = 0.95) are currently the two main positioning methods in hydrography. Other positioning systems whose positioning accuracy increases from year to year (and which may serve as alternative solutions) have been omitted. The article proposes a method that enables an assessment of any given navigation positioning system in terms of its compliance (or non-compliance) with the minimum accuracy requirements specified for hydrographic surveys. The method concerned clearly assesses whether a particular positioning system meets the accuracy requirements set out for a particular IHO order. The model was verified, taking into account both past and present research results (stationary and dynamic) derived from tests on the following systems: DGPS, EGNOS (European Geostationary Navigation Overlay Service), and multi-GNSS receivers (GPS/GLONASS/BDS/Galileo). The study confirmed that the DGPS system meets the requirements for all IHO orders and proved that the EGNOS system can currently be applied in measurements in the orders 1a, 1b, and 2. On the other hand, multi-GNSS receivers meet the requirements for order 2, while some of them meet the requirements for orders 1a and 1b as well.


2020 ◽  
pp. 1-12
Author(s):  
Zhang Caiqian ◽  
Zhang Xincheng

The existing stand-alone multimedia machines and online multimedia machines in the market have certain deficiencies, so they cannot meet the actual needs. Based on this, this research combines the actual needs to design and implement a multi-media system based on the Internet of Things and cloud service platform. Moreover, through in-depth research on the MQTT protocol, this study proposes a message encryption verification scheme for the MQTT protocol, which can solve the problem of low message security in the Internet of Things communication to a certain extent. In addition, through research on the fusion technology of the Internet of Things and artificial intelligence, this research designs scheme to provide a LightGBM intelligent prediction module interface, MQTT message middleware, device management system, intelligent prediction and push interface for the cloud platform. Finally, this research completes the design and implementation of the cloud platform and tests the function and performance of the built multimedia system database. The research results show that the multimedia database constructed in this paper has good performance.


2015 ◽  
Vol 809-810 ◽  
pp. 682-687
Author(s):  
Vasile Nasui ◽  
Mihai Banica ◽  
Dinu Darabă

This paper presents the dynamic characteristics and the proposed positioning performance of the system to them investigated experimentally. In this research, we developed the positioning system and we evaluated positioning accuracy. The developed system uses a servo motor for motion actuation. In this paper, we focused on studying the dependency of the positioning error – elementary errors – the position of the conducting element for the mechanism of the transformation of the rotation translation movement, representatively the mechanism screw – screwdriver and on emphasizing the practical consequences in the field of design, regulation and exploitation of the correct identification of all the initial errors in the structure of the mechanism, their character and the selection for an ultimate calculus of these which are of a real practical importance.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3701
Author(s):  
Ju-Hyeon Seong ◽  
Soo-Hwan Lee ◽  
Won-Yeol Kim ◽  
Dong-Hoan Seo

Wi-Fi round-trip timing (RTT) was applied to indoor positioning systems based on distance estimation. RTT has a higher reception instability than the received signal strength indicator (RSSI)-based fingerprint in non-line-of-sight (NLOS) environments with many obstacles, resulting in large positioning errors due to multipath fading. To solve these problems, in this paper, we propose high-precision RTT-based indoor positioning system using an RTT compensation distance network (RCDN) and a region proposal network (RPN). The proposed method consists of a CNN-based RCDN for improving the prediction accuracy and learning rate of the received distances and a recurrent neural network-based RPN for real-time positioning, implemented in an end-to-end manner. The proposed RCDN collects and corrects a stable and reliable distance prediction value from each RTT transmitter by applying a scanning step to increase the reception rate of the TOF-based RTT with unstable reception. In addition, the user location is derived using the fingerprint-based location determination method through the RPN in which division processing is applied to the distances of the RTT corrected in the RCDN using the characteristics of the fast-sampling period.


Sign in / Sign up

Export Citation Format

Share Document